Nanostructuring of Nanorobots for use in Nanomedicine

Full Text PDF PDF
Author(s) Kal Renganathan Sharma
Pages 116-134
Volume 2
Issue 2
Date February, 2012
Keywords nanostructuring, nanorobots, fullerenes

Submarine nanorobots are being developed for use in branchy therapy, spinal surgery, cancer therapy, etc. Nanoparticles have been developed for use in drug delivery systems and for cure in eye disorders and for use in early diagnosis. Research in nanomedicine is under way in development of diagnostics for rapid monitoring, targeted cancer therapies, localized drug delivery, and improved cell material interactions, scaffolds for tissue engineering and gene delivery systems. Novel therapeutic formulations have been developed using PLGA based nanoparticles. Nanorobots can be used in targeted therapy and in repair work of DNA. Drexler and Smalley debated whether ‘molecular assemblers’ that are devices capable of positioning atoms and molecules for precisely defined reactions in any environment is possible or not. Feynman’s vision of miniaturization is being realized. Smalley sought agreement that precision picking and placing of individual atoms through the use of ‘Smalley-fingers’ is an impossibility. Fullerenes, C60, are the third allotropic form of carbon. Soccer ball structured, C60, with a surface filled with hexagons and pentagons satisfy the Euler’s law. Fullerenes can be prepared by different methods such as: (i) first and second generation combustion synthesis; (ii) chemical route by synthesis of corannulene from naphthalene. Rings are fused and the sheet that is formed is rolled into hemisphere and stitched together; (iii) electric arc method. Different nanostructuring methods are discussed. These include: (1) sputtering of molecular ions;(2) gas evaporation; (3) process to make ultrafine magnetic magnetic powder; (4) triangulation and formation of nanoprisms by light irradiation ; (5) nanorod production using condensed phase synthesis method; subtractive methods such as; (6) lithography; (7) etching; (8) galvanic fabrication; (9) lift-off process for IC circuit fabrication; (10) nanotips and nanorods formation by CMOS process; (11) patterning Iridium Oxide nanostructures; (12) dip pen lithography; (13) SAM, self assembled monolayers; (14) hot embossing; (15) nanoimprint lithography; (16) electron beam lithography; (17) dry etching; (18) reactive ion etching; (19) quantum dots and thin films generation by; (20) sol gel; (21) solid state precipitation; (22) molecular beam epitaxy; (23) chemical vapor deposition; (24) CVD; (25) lithography; (26) nucleation and growth; (27) thin film formation from surface instabilities; (28) thin film formation by spin coating;(29) cryogenic milling for preparation of 100-300 nm sized titanium; (30) atomic lithography methods to generated structures less than 50 nm; (31) electrode position method to prepare nanocomposite; (32) plasma compaction methods; (33) direct write lithography; (34) nanofluids by dispersion. Thermodynamic miscibility of nanocomposites can be calculated from the free energy of mixing. The four thermodynamically stable forms of Carbon are diamond, graphite, C60, Buckminster Fullerene and Carbon Nanotube. 5 different methods of preparation of CNTs, carbon nanotubes were discussed. Thermodynamically stable dispersion of nanoparticles into a polymeric liquid is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the nanoparticle. Tiny magnetically-driven spinning screws were developed. Molecular machines are molecules that can with an appropriate stimulus be temporarily lifted out of equilibrium and can return to equilibrium in the observable macroscopic properties of the system. Molecular shuttle, molecular switches, molecular muscle, molecular rotors, molecular nanovalves are discussed. Supramolecular materials offers alternative to top-down miniaturization and bottom-up fabrication. Self-organization principles hold the key. Gene expression studies can be carried out in biochips. CNRs are a new generation of self-organizing collectives of intelligent nanorobots. This new technology includes procedures for interactions between objects with their environment resulting in solutions of critical problems at the nanoscopic level. Biomimetic materials are designed to mimic a natural biological material. Characterization methods of nanostructures include SAXS, small angle X-ray scattering, TEM, transmission electron microscopy, SEM, scanning electron microscopy, SPM, scanning probe microscope, Raman microscope, AFM atomic force miscroscopy, HeIM helium ion microscopy.

< Back to Feb Issue