

International Journal of Engineering and Technology Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1552

Comparative Analysis of Public-Key Encryption Schemes

Alese, B. K., Philemon E. D., Falaki, S. O.
Department of Computer Science

The Federal University of Technology, Akure; Nigeria

ABSTRACT

The introduction of public-key cryptography by Diffie and Hellman in 1976 was an important watershed in the history of

cryptography. The work sparked off interest in the cryptographic research community and soon several public-key schemes

were proposed and implemented. The Rivest, Shamir and Adleman (RSA), being the first realisation of this abstract model, is

the most widely used public-key scheme today. However, increased processing power and availability of cheaper processing

technology occasioned by the exponential growth in digital technology has generated some security concerns, necessitating

the review of security parameters for enhanced security. Enhanced processing power requirement does not favour the present

class of ubiquitous mobile devices that are characterised by low power consumption, limited memory and bandwidth as they

may not be able to run this cryptographic algorithm due to computational burden associated with long key lengths. And since

future increase in key lengths looks likely given the current technological developments, Elliptic Curve Cryptography (ECC)

has been proposed as an alternative cryptosystem because it satisfies both security requirements and efficiency with shorter

key lengths.

This research work focuses on the comparative analysis of RSA Encryption algorithm, ElGamal Elliptic Curve Encryption

algorithm and Menezes-Vanstone Elliptic Curve Encryption algorithm. These elliptic curve analogues of ElGamal Encryption

scheme were implemented in Java, using classes from the Flexiprovider library of ECC. The RSA algorithm used in the

comparison is the Flexiprovider implementation. Performance evaluation on the three algorithms based on the time lapse for

their Key generation, encryption and decryption algorithms, and encrypted data size was carried out and compared. The

results show that our elliptic curve-based implementations are more superior to the RSA algorithm on all comparative

parameters.

Keywords: Security, Elliptic, Curve, RSA, Crptosystem

1. INTRODUCTION

Public-key cryptography was originally invented as an

elegant solution to the problems associated with

Symmetric-key cryptography. Since Its introduction in

1976 by Diffie and Hellman, numerous public-key

schemes have been proposed and implemented

(Rabah,2005a), each relying on the difficulty of a

classical mathematical problem such as Integer

Factorization Problem (IFP), Discrete Logarithm Problem

(DLP), Elliptic Curve Discrete Logarithm Problem

(ECDLP) etc. However, over the years, with the increase

in processing power of computers, there has been a

reduction in the work factor required to solve IFP and

DLP problems (Berta and Mann, 2002). As a result, key

sizes grew to more than 1000-bits so as to attain a

reasonable level of security. In constrained environments,

however, carrying out thousand-bit operations is

impractical. Therefore, a matter of growing importance in

cryptography is the need for algorithms with low resource

requirements that can be deployed on resource-

constrained ubiquitous devices. This explains why other

public-key methods would be welcomed, Elliptic Curve

Cryptosystem (ECC) being a probable candidate.

Elliptic curves are the basis for a relatively new class of

Public-key schemes. It is predicted that Elliptic Curve

Cryptosystems (ECC) will replace many existing schemes

in the near future. However, the complicated

mathematical background of ECC results in more

sophisticated algorithms, which raises the question

whether the required computational power to run the ECC

algorithm would be smaller compared to that of RSA.

This opens up new vista for comparative studies on the

performance of RSA and ECC (Certicom, 2002, 2004).

Literature search has shown that no work exist on the

implementation and comparison of Rivest, Shamir and

Adleman Encryption Scheme (RSA), Menezes-Vanstone

Elliptic Curve Encryption Scheme (MVEC), and Elliptic

Curve ElGamal Encryption Scheme (ECEG). And So far

no standards have been defined for Elliptic Curve

Encryption Scheme (ECES). The only standard specified

in most documents is the Elliptic Curve Integrated

Encryption Scheme (ECIES), which is a hybrid scheme,

combining the best features from asymmetric and

symmetric cryptosystems. Hence, it is still a research

question whether ciphers based on elliptic curves are ripe

enough to be trusted for deployment in commercial

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1553

products, and probably be adopted as a de facto standard

for security on the internet.

The Elliptic Curve ElGamal Encryption protocol and the

Menezes-Vanstone Elliptic Curve Encryption protocol

consist of three main algorithms: key pair generation,

encryption and decryption. In order to reach the goals of

implementing these protocols, several functions necessary

for their construction were created. Performance

evaluations were conducted based on the time lapse for

these algorithms and the RSA encryption algorithm. Five

test runs were carried out for each protocol on a 100 bytes

text data. The results obtained were juxtaposed based on

standard parameters such as security level providing key

sizes. The size of ciphertext generated by each protocol

was noted and compared.

The security levels for the RSA includes: 1024-bit, 2048-

bit, 3072-bit, 7680-bit and 15360-bit key sizes, and those

of ECEG and MVEC algorithms includes: 160-bit, 224-

bit, 256-bit, 384-bit and 521-bit key sizes. These key sizes

are taken from the National Institute of Standards and

Technology (NIST) guidelines for public key sizes with

equivalent security levels (Alese, 2000).

The existing RSA Encryption algorithm benchmarked

against these implementations is from the Flexiprovider, a

Cryptographic Service Provider.

Entities participating in any of these protocols are

required to generate a pair of public and private keys

using the appropriate key pair generation algorithm. The

public key generated is used for the encryption operation

while the private key is used for the decryption operation.

Encryption with ECEG is accomplished using the

following encryption algorithm:

INPUT: Elliptic curve domain parameters (p, E, G, n),

public key Q

 Plaintext M.

OUTPUT: ciphertext (C1, C2)

Represent the message M as a point Pm in E(Fp).

Select k R [1, n-1]

Compute C1=kG.

Compute C2=Pm + kQ

Return (C1, C2)

The MVEC encryption algorithm is a variant of this

algorithm, employing the use of “masking” instead of

“point embedding” as in the case of ECEG. The

encryption function in each case is a bijection. Thus the

original message can be recovered from the encrypted

result by applying its inverse transformation (decryption

algorithm) with the appropriate trapdoor information.

A software version of the ElGamal Elliptic Curve

Encryption protocol and that of Menezes-Vanstone

Elliptic Curve Encryption protocol were implemented. A

Comparison between these protocols and the RSA

protocol was established. The implementation

environment for the chosen algorithms is Java JDK 6

update 19, and the platform for our experiment is

Windows Vista Home Basic, running on Intel Pentium

Dual Core 1.6GHZ processor and 512MB of RAM

(Brown et al. 2001)

2. IMPLEMENTATION AND

COMPARATIVE ANALYSIS

2.1 Implementing Elliptic Curve Systems

Prior to the implementation of any elliptic curve systems,

several choices have to be made concerning the

underlying finite field, elliptic curve, and cryptographic

protocols. More elaborately, these choices include the

underlying finite field, representation for the finite field

elements, algorithms for performing finite field

arithmetic, choice of an appropriate elliptic curve,

representation for the elliptic curve points, algorithms for

performing elliptic curve arithmetic (windows methods in

affine or projective coordinates), choice of elliptic curve

cryptographic protocol and algorithms for performing

protocol arithmetic (Brown et al., 2001). Usually, these

selections are influenced by security considerations,

application platform, constraints of the particular

computing environment, and constraints of the particular

communications environment. Hence, it is difficult to

decide on a single “best” set of choices. At best what is

regarded as an optimal choice represents a compromise

between efficiency and security. On the whole, care

should be taken to ensure that the set of choices represent

the nexus of the selection criteria.

2.1.1 Choice of the Underlying Finite Field

For any implementation of elliptic curve cryptosystems

the choice of the underlying finite field is crucial. Almost

always the choice is between GF(p) or GF(2
m
) for some

prime p or some integers m respectively. The GF(p) is the

choice for our implementation for the simplicity of its

arithmetic which is implemented in terms of integers

modulo p (Diffie and Hellman, 1976).

2.1.2 Choice of Appropriate Elliptic Curve

The choice of appropriate elliptic curve to use is one of

the most crucial steps in developing an elliptic curve

cryptosystem. Some elliptic curves are susceptible to

attacks which makes them no more secure than existing

systems today. According to (Rabah, 2005a) the most

important qualities to look for in a curve includes:

a. The curve has a large order #E(GF(p)).

b. The curve is not susceptible to the MOV attack

(super-singular curves)

c. The curve order is divisible by a large prime factor.

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1554

d. The large prime factor does not satisfy the divisibility

property: Pc()/2
ni

-1, for small i.

Two types of curves exist, namely

a. Pseudo-random curves whose coefficients are

generated from the output of a seeded cryptographic

hash.

b. Special curves whose coefficients and underlying

field have been selected to optimize the efficiency of

the elliptic curve operations.

The security of any elliptic curve cryptosystems depends

primarily on its order. Therefore, to make an ECC secure,

we must first find curves which have an order satisfying

the following requirements:

 The order of the curve must be a large prime number.

 The curve must be immune to special attacks.

However, since not every elliptic curve offers strong

security properties, and for some curves the ECDLP may

be solved efficiently, and since a poor choice of the curve

compromises security, standards organization like NIST

and SECG published a set of recommended curves with

well understood security properties. These curves have

been recommended for use so as to facilitate

interoperability between different implementations of a

security protocol. Thus, for our implementation, the

following curves from NIST and SECG were adopted

(Certicom Corp., 2000).

a. Prime 192v1 and Prime 256v1 from NIST.

b. Secp160r1, Secp224r1, Secp384r1 and Secp521r1

from SECG.

2.1.3 Choice of Elliptic Curve Protocol

Several elliptic curve protocols are in use today. Some

have been standardized and packaged in a user-friendly

way for developers to include in their applications. For

instance, Legion of Bouncycastle and Flexiprovider have

implemented and included the following elliptic curve

protocols in their Java Cryptographic Extension (JCE):

ECDSA, ECIES, ECDH and ECNR. There are no

standards defined for the elliptic curve encryption

scheme, and no implementations for the pure scheme exist

for developers to use straight out-of-box. Hence, in this

project we implemented the elliptic curve encryption

protocol. In particular, we implemented the elliptic curve

variants of ElGamal encryption algorithm, namely

a. Elliptic Curve ElGamal Encryption Algorithm

(ECEG), and

b. Menezes- vanstone elliptic curve encryption

algorithm (MVEC).

c. Each scheme consists of three main algorithms: key

pair generation, encryption and decryption

algorithms. We implemented these algorithms in

java, using classes from the Flexiprovider besides

those we created (Rabah, 2005b, 2005c).

3. STRUCTURE OF THE

IMPLEMENTATION

The implementation has been divided into two separate

packages: ECEG and MVEC. The ECEG package

contains all the classes needed to implement the Elliptic

Curve ElGamal Encryption protocol, and the MVEC

package contains classes needed to implement the

Menezes-Vanstone Elliptic Curve Encryption protocol.

The classes in each package are shown in figure 1.

As can be seen from figure 1, the only difference between

the ECEG package and the MVEC package are the

classes: GFElement, PointGFP, EllipticCurve,

EllipticCurveGFP, and IntegerFunctions. This is because

the ECEG package implements the point embedding

algorithm, which requires the above classes to facilitate

the process. The MVEC which uses masking instead of

point embedding requires the “Point class” to accomplish

its task (Rabah, 2006).

The common classes and those listed above are imports

from the Flexiprovider package:

“de.flexiprovider.common.maths”. Some of these classes,

like ScalarMult and FlexiBigInt, were heavily overloaded

in our implementations.

The ECEG package contains all the classes used in the

implementation of ElGamal Elliptic Curve Encryption

algorithm. It consists of four classes which we constructed

beside those we incorporated into our work from other

sources. The classes we constructed are:

ElGamalECCipher, ElGamalECKeyPair,

ElGamalECKeyPairGenerator and ElGamalMain. The

structure of these classes is as shown in figure 2 below.

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1555

Figure 1: Structure of Implementation

Figure 2: Structure of ElGamal Elliptic Curve Encryption Implementation

ElGamalECCiper

ElGamalECKeyPair

ElGamalECKeyPairGenerator

ScalarMult

CurveParams

CurveRegistry

Point

FlexiBigInt

GFElement

IntegerFunctions

PointGFP

GFPElement

EllipticCurve

EllipticCurveGFP

ECEG

MVECCiper

MVECKeyPair

MVECKeyPairGenerator

ScalarMult

CurveParams

CurveRegistry

Point

FlexiBigInt

GFPElement

MVEC

cC

ECE

ElGamalECCipher

+ElGamalECCipher()

+getKeySize(): int

+point2Int(Point): FlexiBigInt

+subArray(byte[], int, int): byte[]

+pointSubArray(Point[], int, int):

Point[]

+pubKey(FlexiBigInt, Point): Point

+privKey(int, SecureRandom):

FlexiBigInt

+domainParameters(int):

CurveParams

+pointToInt(Point[]): FlexiBigInt[]

+int2Ecpoint(FlexiBigInt): Point

+toPointGFP(Point): PointGFP

+getBytes(FlexiBigInt): byte[]

+textToNum(File): FlexiBigInt[]

+encrypt(FlexiBigInt[], Point):

Point[]

+decrypt(Point[], Point): String

ElGamalMain

+ElGamalMain()

+elgamalMain(): void

+concatenate(FlexiBigInt[], FlexiBigInt[]):

FlexiBigInt[]

+getCipherSize():long

+concatenate(FlexiBigInt, FlexiBigInt):

FlexiBigInt[]

+viewCipher(Point[], Point): void

ElGamalECKeyPair

+ElGamalECKeyPair(FlexiBigInt, Point)

+getPrivateKey(): FlexiBigInt

+getPublicKey(): Point

ElGamalECKeyPairGenerator

+ElGamalECKeyPairGenerator(int, Point)

+generateKeyPair():ElGamalECKeyPair

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1556

The MVEC package is the location for all the classes we

use in the implementation of Menezes-Vanstone Elliptic

Curve Encryption algorithm. The package consists of

MVECCipher, MVECKeyPair, MVECKeyPairGenerator

and MVECCipherMain classes, which we constructed

besides the ones we use from the Flexiprovider library.

The structure of these classes is as shown in figure 3

below. Next we give the description of those classes that

are common to the two packages.

Figure 3: Structure of Menezes-Vanstone Elliptic Curve Encryption Implementation

FlexiBigInt

This is a wrapper class for Sun java “bigInt” class. It

includes methods for addition, subtraction, multiplication

and division of large numbers. It also contains methods

for doing modular arithmetic such as modular

exponentiation (modPow), , and modular

inversion (modInverse),

 . (1)

The FlexiBigInt class is based on mutable arrays and thus

there is no need for dynamic memory allocation. The

public methods used from this class are shown in figure 4.

ECEG

ElGamalECCipher

+ElGamalECCipher()

+getKeySize(): int

+point2Int(Point): FlexiBigInt

+subArray(byte[], int, int): byte[]

+pointSubArray(Point[], int, int): Point[]

+pubKey(FlexiBigInt, Point): Point

+privKey(int, SecureRandom): FlexiBigInt

+domainParameters(int): CurveParams

+pointToInt(Point[]): FlexiBigInt[]

+int2Ecpoint(FlexiBigInt): Point

+toPointGFP(Point): PointGFP

+getBytes(FlexiBigInt): byte[]

+textToNum(File): FlexiBigInt[]

+encrypt(FlexiBigInt[], Point): Point[]

+decrypt(Point[], Point): String

ElGamalMain

+ElGamalMain()

+elgamalMain(): void

+concatenate(FlexiBigInt[], FlexiBigInt[]): FlexiBigInt[]

+getCipherSize():long

+concatenate(FlexiBigInt, FlexiBigInt): FlexiBigInt[]

+viewCipher(Point[], Point): void

+mCurrentTime(): long

ElGamalECKeyPair

+ElGamalECKeyPair(FlexiBigInt, Point)

+getPrivateKey(): FlexiBigInt

+getPublicKey(): Point

ElGamalECKeyPairGenerator

+ElGamalECKeyPairGenerator(int, Point)

+generateKeyPair():ElGamalECKeyPair

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1557

Figure 4: class structure of FlexiBigInt class

IntegerFunctions

This class is contained in

“de.flexiprovider.common.math” package. It contains

number-theory related functions for use with integers

represented as int’s or FlexiBigInt objects. It includes

methods for determining the Jacobi symbol, which we

incorporated in our ECEG implementation. The public

methods of this class used in our ECEG implementation

are shown in figure 4.5.

Figure 5: Class Structure for IntegerFunctions class

ScalarMult

Scalar multiplication is the most dominant operation in

elliptic curve cryptography. This class, ScalarMult,

implements the scalar multiplication algorithms described

in chapter three. This is a class located in the

Flexiprovider package:

“de.flexiprovider.common.maths”. It includes methods

for determining the NAF of an integer. The public method

used from this class is shown in figure 6.

Figure 6: Class Structure for the ScalarMult class

CurveRegistry

This class is located in “de.flexiprovider.ec.parameters”

package of the Flexiprovider. It is a container class for

some approved EC domain parameters for elliptic curve

cryptography. The parameters consist of the chosen

elliptic curve to be used, the point order of the curve, and

the base point of the chosen curve etc. It supports domain

parameters from ANSI X9.62, BrainPool, CDC group,

SEC2 and NIST. For our implementations, we utilized

domain parameters supported by SEC2 and NIST (see

appendix B for list of parameters).

Point

MVEC

MVECCipherMain

+MVECCipherMain()

+MvMain(): void

+concatenate(FlexiBigInt[],FlexiBigInt[]):

FlexiBigInt[]

+getCipherSize():long

+concatenate(FlexiBigInt,FlexiBigInt): FlexiBigInt[]

+viewCipher(FlexiBigInt[],Point): void

+mCurrentTime(): long

MVECCipher

+MVECCipher(int)

+getKeySize(): int

+point2Int(Point):FlexiBigInt

+intSubArray(FlexiBigInt[],int,int):

byte[]

+pointSubArray(Point[],int,int):Point[]

+pubKey(FlexiBigInt,Point): Point

+privKey(int,SecureRandom):FlexiBigInt

+domainParameters(int):CurveParams

+pointToInt(Point[]):FlexiBigInt[]

+getBytes(FlexiBigInt):byte[]

+textToNum(File):FlexiBigInt[]

+encrypt(FlexiBigInt[],Point):FlexiBigInt

[]

+decrypt(FlexiBigInt[],Point):String

MVECKeyPairGenerator

+MVECKeyPairGenerator(int, Point)

+generateKeyPair():MVECKeyPair

MVECKeyPair

+MVECKeyPair(FlexiBigInt,Point)

+getPrivateKey(): FlexiBigInt

+getPublicKey(): Point

IntegerFunctions

+jacobi(FlexiBigInt, FlexiBigInt): int

+ressol(FlexiBigInt, FlexiBigInt): FlexiBigInt

ScalarMult

+multiply3 (FlexiBigInt, Point): Point

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1558

This is an abstract class located in

“de.flexiprovider.common.ellipticcurves”. It implements

points and their arithmetic on elliptic curves over finite

prime fields as well as finite binary fields.

PointGFP

This class is a direct subclass of the Point class. It

implements points and their arithmetic on elliptic curves

over finite prime field. It includes methods for point

addition, subtraction and multiplication in both affine and

projective representations. This class is one of the focal

points of our ECEG implementation since the finite prime

field is our chosen underlying field. The public methods

used from this class are shown in figure 7.

GFElement

This is an Interface contained in

“de.flexiprovider.common.math.finitefields” package. It

defines a finite field element and suggests methods for

field operations on field elements such as addition,

subtraction, multiplication and division (inversion).

Figure 7: Class Structure for the abstract class Point and

PointGFP class

GFPElement

This class is the implementation of the GFElement

Interface. It implements an element of the finite prime

field, and includes methods for field arithmetic such as

addition, subtraction and multiplication etc. The public

methods used from this class are shown in figure 4.8.

Figure 8: Class Structure for GFPElement class

EllipticCurve

This class is the top-interface for elliptic curves over finite

fields. It is located in the

“de.flexiprovider.common.maths.ellipticurves” package.

It stores the size of the underlying field as an instance of

FlexiBigInt, and the curve parameters, a and b, as

instances of GFElement.

EllipticCurvesGFP

This class implements the EllipticCurve class. It holds

elliptic curves over finite prime fields in Weierstrass short

form, and stores the field elements, a and b, as instances

of FlexiBigInt respectively. The public methods used

from this class are shown in figure 9.

Figure 9: Class Structure for the abstract class EllipticCurve

and EllipticCurveGFP class

4. PERFORMANCE COMPARISON OF

ECC AND RSA ENCRYPTION

SCHEMES

Robshaw and Yin (1997) compared the operational

characteristics of RSA and ECC. In their article, they

claimed that assuming all necessary parameters and

PointGFP

+PointGFP(GFPElement, GFPElement, FlexiBigInt)

+addXAffin(): Point

+addYAffin(): Point

+onCurve(): boolean

+subtract(): Point

Point

+ Point ()

+getE():EllipticCurve

GFPElement

+GFPElement(GFPElement, GFPElement, FlexiBigInt)

+add(GFElement): GFElement

+subtract(GFElement): GFElement

+multiply(GFElement):GFElement

+toByteArray(): byte[]

+toFlexiBigInt(): FlexiBigInt

+invert(): GFElement

EllipticCurve

+ getA(): GFElement

+getB(): GFElement

EllipticCurveGFP

+EllipticCurveGFP(GFPElement, GFPElement, FlexiBigInt)

+toString(): String

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1559

initialization processes have been performed encryption

with ECC will be almost 8 times longer than with RSA,

and decryption will be almost 6 to 7 times faster. These

findings, however, contrasted that of Certicom

Corporation who adjudged the most efficient

implementation of ECC 10 times faster than comparable

RSA systems. Next, we look at the theory behind RSA

public key encryption to enable us perform our

comparison (Stallings, 2003; Trappe and Washington,

2002)

4.1 Theory of RSA Cryptosystem

The RSA is the most widely used cryptosystem today.

Unfortunately, encrypting a message, m, involves

exponentiation, , a mathematical procedure

which requires a lot of computations, making it

impossible to achieve the speeds of private key systems

such as DES, a phenomenon that is true for all public key

systems (Hankerson et al., 2004).

To set up a RSA cryptosystem, a user (say Alice) picks

two large primes p and q and computes their product,

 . The group used is the multiplicative group
) of units in the integer modulo n. It is well known that

the order of G is)), where denotes

the Euler phi function. Clearly, Alice’s public key is the

pair of integers {n, e} and her private key is d.

4.2 RSA Key Generation

An RSA key pair can be generated using Algorithm 4.1.

The public key consists of a pair of integers (n, e) where

the RSA modulus n is a product of two randomly

generated (and secret) primes p and q of the same bit

length. The encryption exponent e is an integer satisfying

1 < e < φ and gcd (e, φ) = 1 where φ = (p−1)(q −1). The

private key d, also called the decryption exponent, is the

integer satisfying 1 < d < φ and ed ≡ 1 (mod φ). It has

been proven that the problem of determining the private

key d from the public key (n, e) is computationally

equivalent to the problem of determining the factors p and

q of n (Menezes et al., 1991); the latter is the integer

factorization problem (IFP).

Algorithm1 RSA key pair generation

INPUT: Security parameter l.

OUTPUT: RSA public key (n, e) and private key d.

1. Randomly select two primes p and q of the same

bitlength l/2.

2. Compute n = pq and φ = (p−1)(q −1).

3. Select an arbitrary integer e with 1 < e <φ and gcd

(e, φ) = 1.

4. Compute the integer d satisfying 1 < d <φ and ed ≡ 1

(mod φ).

5. Return (n, e, d).

4.3 RSA Encryption/ Decryption Scheme

RSA encryption schemes use the fact that m
ed

 ≡ m (mod

n) for all integers m. The encryption and decryption

procedures for the (basic) RSA public-key encryption

scheme are presented as Algorithms 4.2 and 4.3.

Decryption works because c
d
 ≡ (m

e
)

d
 ≡ m (mod n), as

derived from expression. The security relies on the

difficulty of computing the plaintext m from the

ciphertext c = m
e
 mod n and the public parameters n and

e. This is the problem of finding e-th roots modulo n and

is assumed (but has not been proven) to be as difficult as

the integer factorization problem (Weil, 1998).

Algorithm 2: Basic RSA encryption

INPUT: RSA public key (n, e), plaintext m ∈ [0, n−1].

OUTPUT: Ciphertext c.

1. Compute c = m
e
 mod n.

2. Return(c).

Algorithm 3: Basic RSA decryption

INPUT: RSA public key (n, e), RSA private key d,

ciphertext c.

OUTPUT: Plaintext m.

1. Compute m = c
d
 mod n.

2. Return (m).

5. RUN-TIME COMPARISON BETWEEN

ECC AND RSA

To test and compare the performance characteristics of

the RSA and ECC encryption algorithms, we

independently tested each of the following three main

components for timings: key generation, encryption and

decryption. Timings are not absolute so each operation for

every test parameter was run 20 times in order to reach

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1560

satisfactory level of confidence interval. A 99.9%

confidence interval was calculated from the test results

using the student T-distribution. We also measured the

size of the data files used to store the encrypted results.

The parameters of the operations are:

a. the size of the applied key

b. the size and content of the input data

Tests were performed on Intel Pentium dual core 1.6GHZ

machine with 512MB of RAM. The message used for

encryption is the 100 byte text:” ECDLP is believed to be

harder than both the Integer Factorization and Discrete

Logarithm Problems”. The operating system is Windows

Vista Home Basic. A selected output results for

encryption with the implemented algorithms using

different keys on the same input text are as presented in

appendix A.

Estimates are given for parameter sizes providing

comparable levels of security for RSA and EC systems.

The parameter sizes, also called key sizes, that provide

equivalent security levels for RSA and EC systems are as

listed in table .1.

Table 1: Comparable key sizes between ECC and RSA

ECC RSA

160 1024

224 2048

256 3072

384 7680

512 15360

These five specific security levels were selected because

they represent the amount of work required to perform an

exhaustive key search on the symmetric key encryption

schemes: SKIPJACK, TRIPLE-DES, AES-Small, AES-

Medium, and AES-Large respectively.

5.1 Test Results

This section contains the test results of our experiment.

These results are made up of the lower and upper limits of

99.9% confidence interval calculated using the T-

distribution (see tables 2-4).

Table 2: Test Results for RSA Encryption Scheme

RSA Key
Key Generation Time

(milliseconds)

Encryption Time

(milliseconds)

Decryption Time

(milliseconds)

1024 1312.7 ± 190.8 166.9 ± 46.3 15.7 ± 0.4

2048 6804.6 ± 2540.6 290.2 ± 29.8 122.4 ± 9.1

3072 32108.0 ± 18947.7 310.5 ± 75.5 293.2 ± 71.8

7680 322843.0 ± 233809.0 352.1 ± 154.1 2932.8 ± 44.7

15360 N/A N/A N/A

Table 3: Test Results for Elliptic Curve ElGamal Encryption Scheme

Elliptic Curve
Key Generation Time

(milliseconds)

Encryption Time

(milliseconds)

Decryption Time

(milliseconds)

P-160 198.6 ± 12.5 17.9 ± 4.9 15.7 ± 0.1

P-224 208.3 ± 13.4 95.9 ± 6.8 18.7 ± 5.5

P-256 243.5 ± 22.2 35.1 ± 6.1 21.1 ± 6.8

P-384 294.0 ± 26.5 74.9 ± 7.1 47.7 ± 3.2

P-521 447.8 ± 90.9 138.2 ± 4.9 109.9 ± 0.3

Table 4: Test Results for Menezes-Vanstone Elliptic Curve Encryption Scheme

Elliptic Curve
Key Generation Time

(milliseconds)

Encryption Time

(milliseconds)

Decryption Time

(milliseconds)

P-160 198.6 ± 12.5 15.7 ± 0.4 15.5 ± 0.4

P-224 208.3 ± 13.4 18.8 ± 10.0 17.2 ± 8.0

P-256 243.5 ± 22.2 25.0 ± 5.6 20.3 ± 6.4

P-384 294.0 ± 26.5 50.1 ± 5.4 47.6 ± 3.0

P-521 447.8 ± 90.9 109.9 ± 2.9 108.5 ± 5.3

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1561

5.2 Analysis of Test Results

Key Generation Time

In RSA, the generation of the prime numbers is a crucial

sub-process, which requires generating random numbers

and testing for primality, a highly probabilistic procedure.

Consequently, the times of execution for RSA key

generation are not always the same even for the same key

length; occasionally it can be very long. Nevertheless, this

time depends on the key size, but does not depend on the

size of the input data. The measured values for the

Flexiprovider RSA implementation range from 1312.7ms

– 322843ms (figure 10 below). Typically, for the

recommended 1024-bit key, the time is 1312.7±190.8

milliseconds.

Figure 10: Key Generation Time (milliseconds)

In the case of our ECC implementations, generation of

new common parameters is difficult and often results in

curves that are susceptible to certain specialized attacks.

Hence, for real life applications, certain curves with

reliable parameters have been recommended. They are

believed to enhance interoperability between disparate

systems, a desirable quality for the applications

programmer. The time for key generation in ECC depends

on the key size, the type of ECC and the usage of pre-

computed tables, an efficiency factor included in some

implementation for scalar point multiplication, the most

dominant operation in elliptic curve field operation.

Measured values for the ECP (in this case ECEG and

MVEC) key pair generation range from 198.6ms to

447.8ms (figure 11 below). Typically, that is, for the

recommended 160-bit key, this time is 198.6 ± 12.5ms.

Figure.11: Key Generation Time (milliseconds)

Our comparison revealed that key pair generation for the

ECC systems outperforms RSA at all key lengths, and is

especially apparent as the key length increases. ECC can

create the private/public key pair in superior speed to

RSA comparable key lengths. This is, however, so

because ECC does not have to devote resources to the

computationally intensive generation of prime numbers.

ECC key pair generation time grows linearly with key

sizes, while that of RSA grows exponentially. This

conclusion is obvious from figures 10 and 11 respectively.

Encryption Time

The time lapse for RSA encryption depends on the key

size, but does not depend on the size and content of the

data to be encrypted. The value of the exponent used by

our provider is e=65537, which is recommended for the

1312.7 6804.6
32108

322843

0

100000

200000

300000

400000

RSA1024 RSA2048 RSA3072 RSA7680

Key Generation Times

198.6 208.3
243.5

294

447.8

0

100

200

300

400

500

ECP160 ECP224 ECP256 ECP384 ECP521

Key Generation Times

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1562

1024-bit key in commercial use today. The measured

times for 100 bytes of data range from 166.9ms to

352.1ms.

Encryption time with ECC, however, relies on the key

size, the algorithm type, and the size of the data to be

encrypted. But for the increased storage requirement, the

use of pre-computed tables is highly recommended as this

speed up the elliptic curve operation more than twice.

Encryption times with MVEC appear to be superior when

compared to ECEG. Using 100 bytes of input data, the

measured values for MVEC range from 15.7ms to

109.9ms, while that of ECEG ranges from 17.9ms to

138.2ms (figure 12 below).

Figure 12: Encryption Times (in milliseconds)

It is obvious from figure 12 that encryption with ECEG

and MVEC are superior to that with RSA. The fastest

encryption, however, is our MVEC implementation. This

is true for all values of the key lengths considered.

Decryption Time

Decryption time for the RSA depends on the key size, but

does not depend on the size and content of the input data.

It is worth noting here that the Chinese Remainder

Theorem (CRT) was used to facilitate the decryption

operation. Measured values for 100 bytes of input data

ranges from 15.7ms – 2932.8ms (figure 13 below). The

RSA15360 is not considered in this performance

evaluation because it is not practical.

Figure 13: RSA Decryption Times (milliseconds)

Decryption time for ECC, on the other hand, depends on

the key size, the algorithm type, the size of the input data,

but does not depend on the usage of pre-computed tables.

Decryption times with MVEC appear to be superior

compared to ECEG. Using 100 bytes of data size, the

measured values for MVEC range from 15.5ms to

108.5ms, while that of ECEG ranges from 15.7ms to

109.9ms (figure 14 below).

Our analysis reveals that all the three algorithms perform

at equal rate for the lowest security level. But as the key

sizes increase ECEG and MVEC fared better at almost

166.9

17.9 15.7

290.2

95.9

18.8

310.5

35.1 25

352.1

74.9
50.1

138.2
109.9

0

100

200

300

400

Encryption Times

15.7 122.4
293.2

2932.8

0

500

1000

1500

2000

2500

3000

3500

RSA1024 RSA2048 RSA3072 RSA7680

Decryption Times

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1563

equal rate. However, at the 521-bit key length, MVEC decryption time was superior to that of ECEG.

Figure 14: ECP (ECEG and MVEC) Decryption Times (in milliseconds)

6. SIZE OF ENCRYPTED DATA FILES

The size of the encrypted data for RSA depends on the

size of the key and the size of input data. Previous

research efforts in this area revealed that the size of

encrypted data file is equal to the size of the RSA

modulus (Soram and Khomdram, 2009). The results we

obtained with the Flexiprovider JCE were consistent with

this submission. In this RSA implementation, the size of

the encrypted data file is always equal to the modulus in

all test cases, a phenomenon that results in considerable

bandwidth savings. However, there is a huge limitation

placed on size of the input data to be encrypted. The data

to be encrypted is required to be smaller than the modulus

in each case.

On the other hand, for the Elliptic Curve ElGamal

Encryption scheme (ECEG) the size of encrypted data

depends on the key size and the input data size. Also, the

maximum size of data that can be encrypted in one step

depends on the key size, a limitation that makes it

practically impossible for considering ECEG for large

data size encryption. This scenario also holds for

Menezes-Vanstone Elliptic Curve Encryption scheme

(MVEC), but in this case the size of the encrypted data

file appears to be far smaller in size compared to ECEG

for all key lengths. This implies MVEC is far more

superior to ECEG and RSA on all counts, and therefore

suitable for implementation on various platforms, even

the constrained environments.

Our Comparison further revealed that MVEC offers

considerable bandwidth savings in that the encrypted data

size is larger than the input data size by a factor of 0.5 and

this scale linearly as the key size increases. RSA on the

other hand, scales poorly as the key size increases. For

instance, the encrypted data size for RSA-7680-bit and

15360-bit keys is 960 bytes and 1920 bytes respectively

compared to MVEC-384 bits and MVEC-521 bits keys

with encrypted data size of 271 bytes and 321 bytes

respectively (see table 5 and figure 15 below).

Table 5: Size of encrypted data when making comparison between RSA and ECC

Common key sizes

(bits)

Size of Data to be

encrypted (byte)

Encrypted data size

with RSA (byte)

Encrypted data size

with ECEG (byte)

Encrypted data size

with MVEC (byte)

ECC160=RSA1024 100 128 288 145

ECC224=RSA2048 100 256 342 170

ECC256=RSA3072 100 384 387 196

ECC384=RSA7680 100 960 485 243

 ECC521=RSA15360 100 1920 525 263

15.7 15.5 18.7 17.2 21.1 20.3

47.7 47.6

109.9 108.5

0

20

40

60

80

100

120

Decryption Times

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1564

Figure 15: Size of Encrypted Data (bytes)

7. CONCLUSION

Public-key encryption can be used to eliminate problems

involved with conventional encryption. However, it has

not managed to be as widely accepted as conventional

encryption because it introduces a lot of overheads.

Therefore, it is very important to find ways to reduce the

overheads yet not sacrificing on other aspects of security

so that the desirability in public-key can be exploited.

We have described ECC, which is a promising candidate

for the next generation public-key cryptosystem.

Although ECC’s security has not been completely

evaluated, it is expected to come into widespread use in

various fields in the future.

After comparing the RSA and ECC ciphers, the ECC has

proved to involve much less overheads compared to RSA.

The ECC has been shown to have many advantages due to

its ability to provide the same level of security as RSA yet

using shorter keys. However, its disadvantage which may

even hide its attractiveness is its lack of maturity, as

mathematicians believed that enough research has not yet

been done in ECDLP.

Also, we believed that even though both systems are

valid, the RSA is better than ECC for now, as it is more

reliable because its security can be trusted more.

However, the future of ECC looks brighter than that of

RSA as today’s applications (smart cards, pagers, and

cellular telephones etc) cannot afford the overheads

introduced by RSA. Finally, both systems can be

considered as good given the low success rate associated

with attacking them.

REFERENCES

[1] Alese, B.K. (2000). Vulnerability Analysis of

Encryption/Decryption techniques of compute

Network security. Master’s Thesis, Federal

University of Technology, Akure, Nigeria.

[2] Berta, I.Z., and Z. A. Mann (2002). Implementing

Elliptic Curve Cryptography on PC and Smart Card,

Periodica Polytechnica Ser. El. Eng. Vol 46 NO 1-2,

PP 47.

[3] Brown, M., D. L. Hankerson, J. L_opez and A.

Menezes (2001). Software implementation of the

NIST Elliptic curves over prime fields. In Progress

in Cryptology - CT-RSA, D. Naccache, Ed.,vol. 2020

of Lecture Notes in Computer Science, pp. 250-265.

[4] Certicom Corp., (2004). An elliptic curve

cryptography (ecc) primer. White paper, Certicom.

[5] Certicom Press Release (2002). Certicom announces

Elliptic Curve cryptosystem (ECC) ChallengeWinner.

November 6, 2002.

http://www.Certicom.com/about/pr/02/021106_ecc_

winner.html

128
288

145
256 342

170
384 387

196

960

485

243

1920

525

263

0

500

1000

1500

2000

2500

Size of Encrypted Data

http://www.certicom.com/about/pr/02/021106_ecc_winner.html
http://www.certicom.com/about/pr/02/021106_ecc_winner.html

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1565

[6] Certicom Corp., (2000), Standards for Efficient

Cryptography, SEC 1: Elliptic Curve Cryptography.

http://www.secg.org/drafts.htm.

[7] Diffie, W. and M. E. Hellman (1976). New directions

in cryptography. IEEE Transactions on Information

Theory, Vol. 22, No. 6, pp. 644-654.

[8] Friedman, W.F. (1987). The Index of Coincidence

and Its Applications in Cryptography, Riverbank

Publication No. 22, Riverbank Labs, 1920. Reprinted

by Aegean Park Press.

[9] FIPS 113, National Institute of Standards and

Technology (formerly National Bureau of Standards),

1985. FIPS PUB 113: Computer Data Authentication,

May 30.

[10] Rabah, K. (2005a). Theory and implementation of

elliptic curve cryptography. Journal of applied

sciences, Vol 5: 604-633.

[11] Rabah, K. (2005b). Elliptic curve ElGamal

Encryption and signature Schemes. Information

technology journal,4(3): 299-306.

[12] Rabah, K. (2005c). Implementation of Elliptic curve

Diffie-Hellman and EC Encryption schemes.

Information technology journal ,4(2): 132-139

[13] Rabah, K. (2006). Implementing Secure RSA

Cryptosystem Using Your Own Cryptographic JCE

Provider. Journal of Applied sciences, 6(3); 482-510.

[14] Robshaw, M. J. B. and Y. L. Yin (1997). Elliptic

Curve Cryptosystems.

http://www.rsasecurity.com/rsalabs/ecc/elliptic

curve.html.

[15] Stallings, W. (2003). Cryptography and Network

Security: Principles and Practice, 3
rd

, Prentice Hall,

New Jersey.

[16] Systronic Inc. Bruce Boyes. Why use java?.

www.practicalembeddedjava.com/language/whyuseja

va.pdf. 8.1,

[17] Trappe. W. and L. C. Washington. (2002).

Introduction to Cryptography with Coding Theory,

Prentice Hall, New Jersey.

[18] Weil, N. (1998). U.S. govt.’s encryption standard

cracked in record time. Network World.

http://www.networkworld.com/news0720des.html

http://www.secg.org/drafts.htm
http://www.rsasecurity.com/rsalabs/ecc/elliptic%20curve.html
http://www.rsasecurity.com/rsalabs/ecc/elliptic%20curve.html
http://www.practicalembeddedjava.com/language/whyusejava.pdf.%208.1
http://www.practicalembeddedjava.com/language/whyusejava.pdf.%208.1
http://www.networkworld.com/news0720des.html

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1566

APPENDIX A

 Screen Shots of Interfaces showing some Selected Outputs

The screenshot below shows the ciphertext when 521-bits key is used with the MVEC encryption transformation.

The screenshot below shows the measured performance when 521-bits key is used with the MVEC encryption

transformation.

The screenshot below shows the ciphertext when 521-bits key is used with the ECEG encryption transformation.

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1567

The screenshot below shows the measured performance when 521-bits key is used with the ECEG encryption transformation.

The screenshot below shows the ciphertext when 3072-bits key is used with the RSA encryption transformation.

The screenshot below shows the measured performance when 3072-bits key is used with the RSA encryption transformation.

International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012

 ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 1568

