CENTRE OF PROFESSIONAL RESEARCH PUBLICATIONS

International
Journal of Engineering & Technology ISSN 2049-3444

International Journal of Engineering and Technology Volume 2 No. 9, September, 2012

Comparative Analysis of Public-Key Encryption Schemes
Alese, B. K., Philemon E. D., Falaki, S. O.

Department of Computer Science
The Federal University of Technology, Akure; Nigeria

ABSTRACT

The introduction of public-key cryptography by Diffie and Hellman in 1976 was an important watershed in the history of
cryptography. The work sparked off interest in the cryptographic research community and soon several public-key schemes
were proposed and implemented. The Rivest, Shamir and Adleman (RSA), being the first realisation of this abstract model, is
the most widely used public-key scheme today. However, increased processing power and availability of cheaper processing
technology occasioned by the exponential growth in digital technology has generated some security concerns, necessitating
the review of security parameters for enhanced security. Enhanced processing power requirement does not favour the present
class of ubiquitous mobile devices that are characterised by low power consumption, limited memory and bandwidth as they
may not be able to run this cryptographic algorithm due to computational burden associated with long key lengths. And since
future increase in key lengths looks likely given the current technological developments, Elliptic Curve Cryptography (ECC)
has been proposed as an alternative cryptosystem because it satisfies both security requirements and efficiency with shorter
key lengths.

This research work focuses on the comparative analysis of RSA Encryption algorithm, ElGamal Elliptic Curve Encryption
algorithm and Menezes-Vanstone Elliptic Curve Encryption algorithm. These elliptic curve analogues of EIGamal Encryption
scheme were implemented in Java, using classes from the Flexiprovider library of ECC. The RSA algorithm used in the
comparison is the Flexiprovider implementation. Performance evaluation on the three algorithms based on the time lapse for
their Key generation, encryption and decryption algorithms, and encrypted data size was carried out and compared. The
results show that our elliptic curve-based implementations are more superior to the RSA algorithm on all comparative
parameters.

Keywords: Security, Elliptic, Curve, RSA, Crptosystem

1. INTRODUCTION Elliptic curves are the basis for a relatively new class of
Public-key schemes. It is predicted that Elliptic Curve
Public-key cryptography was originally invented as an Cryptosystems (ECC) will replace many existing schemes
elegant solution to the problems associated with in the near future. However, the complicated
Symmetric-key cryptography. Since lIts introduction in mathematical background of ECC results in more
1976 by Diffie and Hellman, numerous public-key sophisticated algorithms, which raises the question
schemes have been proposed and implemented whether the required computational power to run the ECC
(Rabah,2005a), each relying on the difficulty of a algorithm would be smaller compared to that of RSA.
classical mathematical problem such as Integer This opens up new vista for comparative studies on the
Factorization Problem (IFP), Discrete Logarithm Problem performance of RSA and ECC (Certicom, 2002, 2004).
(DLP), Elliptic Curve Discrete Logarithm Problem
(ECDLP) etc. However, over the years, with the increase Literature search has shown that no work exist on the
in processing power of Computersy there has been a implementation and Comparison of Rivest, Shamir and
reduction in the work factor required to solve IFP and Adleman Encryption Scheme (RSA), Menezes-Vanstone
DLP problems (Berta and Mann, 2002). As a result, key Elliptic Curve Encryption Scheme (MVEC), and Elliptic
sizes grew to more than 1000-bits so as to attain a Curve ElGamal Encryption Scheme (ECEG). And So far
reasonable level of security. In constrained environments, no standards have been defined for Elliptic Curve
however, carrying out thousand-bit operations is Encryption Scheme (ECES). The only standard specified
impractical. Therefore, a matter of growing importance in in most documents is the Elliptic Curve Integrated
cryptography is the need for algorithms with low resource Encryption Scheme (ECIES), which is a hybrid scheme,
requirements that can be deployed on resource- combining the best features from asymmetric and
constrained ubiquitous devices. This explains why other symmetric cryptosystems. Hence, it is still a research
public-key methods would be welcomed, Elliptic Curve question whether ciphers based on elliptic curves are ripe
Cryptosystem (ECC) beingaprobab|e candidate. enOUgh to be trusted for deployment in commercial

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BSIN:]

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

products, and probably be adopted as a de facto standard
for security on the internet.

The Elliptic Curve EIGamal Encryption protocol and the
Menezes-Vanstone Elliptic Curve Encryption protocol
consist of three main algorithms: key pair generation,
encryption and decryption. In order to reach the goals of
implementing these protocols, several functions necessary
for their construction were created. Performance
evaluations were conducted based on the time lapse for
these algorithms and the RSA encryption algorithm. Five
test runs were carried out for each protocol on a 100 bytes
text data. The results obtained were juxtaposed based on
standard parameters such as security level providing key
sizes. The size of ciphertext generated by each protocol
was noted and compared.

The security levels for the RSA includes: 1024-bit, 2048-
bit, 3072-bit, 7680-bit and 15360-bit key sizes, and those
of ECEG and MVEC algorithms includes: 160-bit, 224-
bit, 256-bit, 384-bit and 521-bit key sizes. These key sizes
are taken from the National Institute of Standards and
Technology (NIST) guidelines for public key sizes with
equivalent security levels (Alese, 2000).

The existing RSA Encryption algorithm benchmarked
against these implementations is from the Flexiprovider, a
Cryptographic Service Provider.

Entities participating in any of these protocols are
required to generate a pair of public and private keys
using the appropriate key pair generation algorithm. The
public key generated is used for the encryption operation
while the private key is used for the decryption operation.
Encryption with ECEG is accomplished using the
following encryption algorithm:

INPUT: Elliptic curve domain parameters (p, E, G, n),
public key Q
Plaintext M.
OUTPUT: ciphertext (C4, C,)
Represent the message M as a point Py, in E(Fy).
Selectk er[1, n-1]
Compute C,=kG.
Compute C,=P, + kQ
Return (C4, Cy)

The MVEC encryption algorithm is a variant of this
algorithm, employing the use of “masking” instead of
“point embedding” as in the case of ECEG. The
encryption function in each case is a bijection. Thus the
original message can be recovered from the encrypted
result by applying its inverse transformation (decryption
algorithm) with the appropriate trapdoor information.

A software version of the ElGamal Elliptic Curve
Encryption protocol and that of Menezes-Vanstone
Elliptic Curve Encryption protocol were implemented. A
Comparison between these protocols and the RSA

protocol ~was established. The implementation
environment for the chosen algorithms is Java JDK 6
update 19, and the platform for our experiment is
Windows Vista Home Basic, running on Intel Pentium
Dual Core 1.6GHZ processor and 512MB of RAM
(Brown et al. 2001)

2. IMPLEMENTATION AND
COMPARATIVE ANALYSIS

2.1 Implementing Elliptic Curve Systems

Prior to the implementation of any elliptic curve systems,
several choices have to be made concerning the
underlying finite field, elliptic curve, and cryptographic
protocols. More elaborately, these choices include the
underlying finite field, representation for the finite field
elements, algorithms for performing finite field
arithmetic, choice of an appropriate elliptic curve,
representation for the elliptic curve points, algorithms for
performing elliptic curve arithmetic (windows methods in
affine or projective coordinates), choice of elliptic curve
cryptographic protocol and algorithms for performing
protocol arithmetic (Brown et al., 2001). Usually, these
selections are influenced by security considerations,
application platform, constraints of the particular
computing environment, and constraints of the particular
communications environment. Hence, it is difficult to
decide on a single “best” set of choices. At best what is
regarded as an optimal choice represents a compromise
between efficiency and security. On the whole, care
should be taken to ensure that the set of choices represent
the nexus of the selection criteria.

2.1.1 Choice of the Underlying Finite Field

For any implementation of elliptic curve cryptosystems
the choice of the underlying finite field is crucial. Almost
always the choice is between GF(p) or GF(2™) for some
prime p or some integers m respectively. The GF(p) is the
choice for our implementation for the simplicity of its
arithmetic which is implemented in terms of integers
modulo p (Diffie and Hellman, 1976).

2.1.2 Choice of Appropriate Elliptic Curve

The choice of appropriate elliptic curve to use is one of
the most crucial steps in developing an elliptic curve
cryptosystem. Some elliptic curves are susceptible to
attacks which makes them no more secure than existing
systems today. According to (Rabah, 2005a) the most
important qualities to look for in a curve includes:

a. The curve has a large order #E(GF(p)).
b. The curve is not susceptible to the MOV attack
(super-singular curves)

c. The curve order is divisible by a large prime factor.

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BMENNe]

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

d. The large prime factor does not satisfy the divisibility
property: PC(]FP)/Z”'-l, for small i.

Two types of curves exist, namely

a. Pseudo-random curves whose coefficients are
generated from the output of a seeded cryptographic
hash.

b. Special curves whose coefficients and underlying
field have been selected to optimize the efficiency of
the elliptic curve operations.

The security of any elliptic curve cryptosystems depends
primarily on its order. Therefore, to make an ECC secure,
we must first find curves which have an order satisfying
the following requirements:

e The order of the curve must be a large prime number.
e The curve must be immune to special attacks.

However, since not every elliptic curve offers strong
security properties, and for some curves the ECDLP may
be solved efficiently, and since a poor choice of the curve
compromises security, standards organization like NIST
and SECG published a set of recommended curves with
well understood security properties. These curves have
been recommended for use so as to facilitate
interoperability between different implementations of a
security protocol. Thus, for our implementation, the
following curves from NIST and SECG were adopted
(Certicom Corp., 2000).

a. Prime 192v1 and Prime 256v1 from NIST.

b. Secpl60rl, Secp224rl, Secp384rl and Secp521rl
from SECG.

2.1.3 Choice of Elliptic Curve Protocol

Several elliptic curve protocols are in use today. Some
have been standardized and packaged in a user-friendly
way for developers to include in their applications. For
instance, Legion of Bouncycastle and Flexiprovider have
implemented and included the following elliptic curve
protocols in their Java Cryptographic Extension (JCE):
ECDSA, ECIES, ECDH and ECNR. There are no
standards defined for the elliptic curve encryption
scheme, and no implementations for the pure scheme exist
for developers to use straight out-of-box. Hence, in this

project we implemented the elliptic curve encryption
protocol. In particular, we implemented the elliptic curve
variants of EIGamal encryption algorithm, namely

a. Elliptic Curve ElGamal Encryption Algorithm
(ECEG), and

b. Menezes- vanstone elliptic curve encryption
algorithm (MVEC).

c. Each scheme consists of three main algorithms: key
pair generation, encryption and decryption
algorithms. We implemented these algorithms in
java, using classes from the Flexiprovider besides
those we created (Rabah, 2005b, 2005c).

3. STRUCTURE OF THE
IMPLEMENTATION

The implementation has been divided into two separate
packages: ECEG and MVEC. The ECEG package
contains all the classes needed to implement the Elliptic
Curve ElGamal Encryption protocol, and the MVEC
package contains classes needed to implement the
Menezes-Vanstone Elliptic Curve Encryption protocol.
The classes in each package are shown in figure 1.

As can be seen from figure 1, the only difference between
the ECEG package and the MVEC package are the
classes: GFElement, PointGFP, EllipticCurve,
EllipticCurveGFP, and IntegerFunctions. This is because
the ECEG package implements the point embedding
algorithm, which requires the above classes to facilitate
the process. The MVEC which uses masking instead of
point embedding requires the “Point class” to accomplish
its task (Rabah, 2006).

The common classes and those listed above are imports
from the Flexiprovider package:
“de.flexiprovider.common.maths”. Some of these classes,
like ScalarMult and FlexiBiglnt, were heavily overloaded
in our implementations.

The ECEG package contains all the classes used in the
implementation of ElGamal Elliptic Curve Encryption
algorithm. It consists of four classes which we constructed
beside those we incorporated into our work from other
sources. The classes we constructed are:
ElGamalECCipher, ElGamalECKeyPair,
ElGamalECKeyPairGenerator and ElGamalMain. The
structure of these classes is as shown in figure 2 below.

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BEESYII

ECEG

ElGamalECCiper
ElGamalECKeyPair
ElGamalECKeyPairGenerator
ScalarMult
CurveParams
CurveRegistry
Point

FlexiBigint
GFElement
IntegerFunctions
PointGFP
GFPElement
EllipticCurve
EllipticCurveGFP

MVEC

MVECCiper
MVECKeyPair
MVECKeyPairGenerator
ScalarMult

CurveParams
CurveRegistry

Point

FlexiBigInt

GFPElement

Figure 1: Structure of Implementation

ECE

FlGamalFCCipher

ElGamalECKeyPairGenerator

+ElGamalECCipher()
+getKeySize(): int
+point2Int(Point): FlexiBigint
+subArray(byte[], int, int): byte[]
+pointSubArray(Point[], int, int):
Point[]

+pubKey(FlexiBiglnt, Point): Point
+privKey(int, SecureRandom):
FlexiBigint
+domainParameters(int):
CurveParams
+pointTolnt(Point[]): FlexiBigint[]
+int2Ecpoint(FlexiBigInt): Point
+toPointGFP(Point): PointGFP
+getBytes(FlexiBigint): byte[]
+textToNum(File): FlexiBigInt[]
+encrypt(FlexiBigInt[], Point):
Point[]

+decrypt(Point[], Point): String

+ElGamalECKeyPairGenerator(int, Point)
+generateKeyPair():EIGamalECKeyPair

FlGamalFCKeyPair
+ElGamalECKeyPair(FlexiBigint, Point)
+getPrivateKey(): FlexiBigInt

+getPublicKey(): Point

ElGamalMain
+ElGamalMain()
+elgamalMain(): void

+concatenate(FlexiBigInt[], FlexiBigint[]):
FlexiBigint[]

+getCipherSize():long
+concatenate(FlexiBiglnt, FlexiBigInt):
FlexiBigint[]

Figure 2: Structure of ElIGamal Elliptic Curve Encryption Implementation

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved.

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

1555

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

The MVEC package is the location for all the classes we
use in the implementation of Menezes-Vanstone Elliptic
Curve Encryption algorithm. The package consists of
MVECCipher, MVECKeyPair, MVECKeyPairGenerator
and MVECCipherMain classes, which we constructed

ECEG

besides the ones we use from the Flexiprovider library.
The structure of these classes is as shown in figure 3
below. Next we give the description of those classes that
are common to the two packages.

ElGamalECCipher

ElGamalECKeyPairGenerator

+EIGamalECCipher()

+getKeySize(): int

+point2Int(Point): FlexiBigInt
+subArray(byte[], int, int): byte[]
+pointSubArray(Point[], int, int): Point[]
+pubKey(FlexiBigint, Point): Point
+privKey(int, SecureRandom): FlexiBiglnt
+domainParameters(int): CurveParams
+pointTolnt(Point[]): FlexiBigint[]
+int2Ecpoint(FlexiBiglnt): Point
+toPointGFP(Point): PointGFP
+getBytes(FlexiBigint): byte[]
+textToNum(File): FlexiBigInt[]
+encrypt(FlexiBigInt[], Point): Point[]

+decrypt(Point[], Point): String

+ElGamalECKeyPairGenerator(int, Point)

+generateKeyPair():EIGamalECKeyPair

ElGamalECKeyPair

+ElGamalECKeyPair(FlexiBiglnt, Point)
+getPrivateKey(): FlexiBigint

+getPublicKey(): Point

ElGamalMain

+ElGamalMain()

+elgamalMain(): void

+concatenate(FlexiBigint[], FlexiBigInt[]): FlexiBigInt[]
+getCipherSize():long

+concatenate(FlexiBiglnt, FlexiBigint): FlexiBigint[]
+viewCipher(Point[], Point): void

+mCurrentTime(): long

Figure 3: Structure of Menezes-Vanstone Elliptic Curve Encryption Implementation

FlexiBiglInt

This is a wrapper class for Sun java “biglnt” class. It
includes methods for addition, subtraction, multiplication
and division of large numbers. It also contains methods
for doing modular arithmetic such as modular

exponentiation (modPow), g*modn, and modular
inversion (modInverse),

ax = 1modn. Q)
The FlexiBiglnt class is based on mutable arrays and thus

there is no need for dynamic memory allocation. The
public methods used from this class are shown in figure 4.

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BEEINS

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

MVEC
MVECCipher MVECKeyPairGenerator
+MVECCipher(int) +MVECKeyPairGenerator(int, Point)
+getKeySize(): int +generateKeyPair():MVECKeyPair
+point2Int(Point):FlexiBiglint
+intSubArray(FlexiBiglInt[],int,int): MVECKeyPair
byte[] +MVECKeyPair(FlexiBiglnt,Point)
+pointSubArray(Point[],int,int):Point[] +getPrivateKey(): FlexiBigInt
+pubKey(FlexiBiglnt,Point): Point +getPublicKey(): Point

+privKey(int,SecureRandom):FlexiBiglnt

MV/ECCipherMain

+domainParameters(int):CurveParams

+pointTolnt(Point[]):FlexiBigint[] +MVECCipherMain()
+getBytes(FlexiBigInt):byte[] +MvMain(): void
+textToNum(File):FlexiBigint[] +concatenate(FlexiBigInt[],FlexiBigInt[]):
+encrypt(FlexiBigInt[],Point):FlexiBigInt FlexiBigint[]

0 +getCipherSize():long

+concatenate(FlexiBiglnt,FlexiBiglnt): FlexiBigInt[]
+viewCipher(FlexiBigint[],Point): void

LmCurrantTimal/\ - lann

Figure 4: class structure of FlexiBiglnt class

IntegerFunctions “de.flexiprovider.common.maths”. It includes methods
for determining the NAF of an integer. The public method

This class is contained in used from this class is shown in figure 6.

“de.flexiprovider.common.math” package. It contains

number-theory related functions for use with integers ScalarMult

represented as int’s or FlexiBigInt objects. It includes

methods for determining the Jacobi symbol, which we +multiply3 (FlexiBigint, Point): Point

incorporated in our ECEG implementation. The public

methods of this class used in our ECEG implementation Figure 6: Class Structure for the ScalarMult class

are shown in figure 4.5.
CurveRegistry

IntegerFunctions

This class is located in “de.flexiprovider.ec.parameters”
+jacobi(FlexiBigInt, FlexiBigint): int package of the Flexiprovider. It is a container class for
some approved EC domain parameters for elliptic curve
cryptography. The parameters consist of the chosen
elliptic curve to be used, the point order of the curve, and
the base point of the chosen curve etc. It supports domain
parameters from ANSI X9.62, BrainPool, CDC group,
SEC2 and NIST. For our implementations, we utilized

o . o domain parameters supported by SEC2 and NIST (see
Scalar multiplication is the most dominant operation in appendix B for list of parameters).

elliptic curve cryptography. This class, ScalarMult,
implements the scalar multiplication algorithms described
in chapter three. This is a class located in the
Flexiprovider package:

+ressol(FlexiBiglnt, FlexiBiglnt): FlexiBiglnt

Figure 5: Class Structure for IntegerFunctions class

ScalarMult

Point

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BINy]

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

This is an abstract class located in
“de.flexiprovider.common.ellipticcurves”. It implements
points and their arithmetic on elliptic curves over finite
prime fields as well as finite binary fields.

PointGFP

This class is a direct subclass of the Point class. It
implements points and their arithmetic on elliptic curves
over finite prime field. It includes methods for point
addition, subtraction and multiplication in both affine and
projective representations. This class is one of the focal
points of our ECEG implementation since the finite prime
field is our chosen underlying field. The public methods
used from this class are shown in figure 7.

GFElement

This is an Interface contained in
“de.flexiprovider.common.math.finitefields” package. It
defines a finite field element and suggests methods for
field operations on field elements such as addition,
subtraction, multiplication and division (inversion).

Paint

+ Point ()

+getE():EllipticCurve

PointGFP

+PointGFP(GFPElement, GFPElement, FlexiBigint)
+addXAffin(): Point
+addY Affin(): Point
+onCurve(): boolean

+subtract(): Point

Figure 7: Class Structure for the abstract class Point and
PointGFP class

GFPElement

This class is the implementation of the GFElement
Interface. It implements an element of the finite prime
field, and includes methods for field arithmetic such as
addition, subtraction and multiplication etc. The public
methods used from this class are shown in figure 4.8.

GFPElement

+GFPElement(GFPElement, GFPElement, FlexiBigInt)
+add(GFElement): GFElement

+subtract(GFElement): GFElement
+multiply(GFElement):GFElement

+toByteArray(): byte[]

+toFlexiBigInt(): FlexiBigint

+invert(): GFElement

Figure 8: Class Structure for GFPElement class

EllipticCurve

This class is the top-interface for elliptic curves over finite
fields. It is located in the
“de.flexiprovider.common.maths.ellipticurves” package.
It stores the size of the underlying field as an instance of
FlexiBigInt, and the curve parameters, a and b, as
instances of GFElement.

EllipticCurvesGFP

This class implements the EllipticCurve class. It holds
elliptic curves over finite prime fields in Weierstrass short
form, and stores the field elements, a and b, as instances
of FlexiBigInt respectively. The public methods used
from this class are shown in figure 9.

EllipticCurve
+ getA(): GFElement
+getB(): GFElement

EllipticCurveGFP

+EllipticCurveGFP(GFPElement, GFPElement, FlexiBigint)
+toString(): String

Figure 9: Class Structure for the abstract class EllipticCurve
and EllipticCurveGFP class

4. PERFORMANCE COMPARISON OF
ECC AND RSA ENCRYPTION
SCHEMES

Robshaw and Yin (1997) compared the operational
characteristics of RSA and ECC. In their article, they
claimed that assuming all necessary parameters and

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BN

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

initialization processes have been performed encryption
with ECC will be almost 8 times longer than with RSA,
and decryption will be almost 6 to 7 times faster. These
findings, however, contrasted that of Certicom
Corporation who adjudged the most efficient
implementation of ECC 10 times faster than comparable
RSA systems. Next, we look at the theory behind RSA
public key encryption to enable us perform our
comparison (Stallings, 2003; Trappe and Washington,
2002)

4.1 Theory of RSA Cryptosystem

The RSA is the most widely used cryptosystem today.
Unfortunately, encrypting a message, m, involves
exponentiation,c = m®mod n, a mathematical procedure
which requires a lot of computations, making it
impossible to achieve the speeds of private key systems
such as DES, a phenomenon that is true for all public key
systems (Hankerson et al., 2004).

To set up a RSA cryptosystem, a user (say Alice) picks
two large primes p and g and computes their product,
n = pq. The group used is the multiplicative group(G =
Z*) of units in the integer modulo n. It is well known that
the order of G is @ = (p — 1)(q — 1), where ¢ denotes
the Euler phi function. Clearly, Alice’s public key is the
pair of integers {n, e} and her private key is d.

4.2 RSA Key Generation

An RSA key pair can be generated using Algorithm 4.1.
The public key consists of a pair of integers (n, €) where
the RSA modulus n is a product of two randomly
generated (and secret) primes p and q of the same bit
length. The encryption exponent e is an integer satisfying
l<e<gpandgcd (e,) =1 where ¢ = (p—1)(q —1). The
private key d, also called the decryption exponent, is the
integer satisfying 1 < d < ¢ and ed = 1 (mod ¢). It has
been proven that the problem of determining the private
key d from the public key (n, e) is computationally
equivalent to the problem of determining the factors p and
g of n (Menezes et al., 1991); the latter is the integer
factorization problem (IFP).

Algorithm1 RSA key pair generation

INPUT: Security parameter .

OUTPUT: RSA public key (n, €) and private key d.

1. Randomly select two primes p and g of the same
bitlength 1/2.

2. Compute n = pg and ¢ = (p—1)(q —1).

3. Select an arbitrary integer e with 1 < e <g¢ and gcd
(e,) =1.

4. Compute the integer d satisfying 1 < d <gp and ed = 1
(mod ¢).

5. Return (n, e, d).

4.3 RSA Encryption/ Decryption Scheme

RSA encryption schemes use the fact that m® = m (mod
n) for all integers m. The encryption and decryption
procedures for the (basic) RSA public-key encryption
scheme are presented as Algorithms 4.2 and 4.3.
Decryption works because ¢ = (m%)? = m (mod n), as
derived from expression. The security relies on the
difficulty of computing the plaintext m from the
ciphertext ¢ = m®* mod n and the public parameters n and
e. This is the problem of finding e-th roots modulo n and
is assumed (but has not been proven) to be as difficult as
the integer factorization problem (Weil, 1998).

Algorithm 2: Basic RSA encryption

INPUT: RSA public key (n, e), plaintext m € [0, n—1].
OUTPUT: Ciphertext c.

1. Compute ¢ = m® mod n.

2. Return(c).

Algorithm 3: Basic RSA decryption

INPUT: RSA public key (n, €), RSA private key d,
ciphertext c.

OUTPUT: Plaintext m.

1. Compute m = ¢ mod n.

2. Return (m).

5. RUN-TIME COMPARISON BETWEEN
ECC AND RSA

To test and compare the performance characteristics of
the RSA and ECC encryption algorithms, we
independently tested each of the following three main
components for timings: key generation, encryption and
decryption. Timings are not absolute so each operation for
every test parameter was run 20 times in order to reach

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BEINe]

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

satisfactory level of confidence interval. A 99.9%
confidence interval was calculated from the test results
using the student T-distribution. We also measured the
size of the data files used to store the encrypted results.

The parameters of the operations are:
a. the size of the applied key
b. the size and content of the input data

Tests were performed on Intel Pentium dual core 1.6GHZ
machine with 512MB of RAM. The message used for
encryption is the 100 byte text:” ECDLP is believed to be
harder than both the Integer Factorization and Discrete
Logarithm Problems”. The operating system is Windows
Vista Home Basic. A selected output results for
encryption with the implemented algorithms using
different keys on the same input text are as presented in
appendix A.

Estimates are given for parameter sizes providing
comparable levels of security for RSA and EC systems.
The parameter sizes, also called key sizes, that provide

equivalent security levels for RSA and EC systems are as
listed in table .1.

Table 1: Comparable key sizes between ECC and RSA

ECC RSA
160 1024
224 2048
256 3072
384 7680
512 15360

These five specific security levels were selected because
they represent the amount of work required to perform an
exhaustive key search on the symmetric key encryption
schemes: SKIPJACK, TRIPLE-DES, AES-Small, AES-
Medium, and AES-Large respectively.

5.1 Test Results

This section contains the test results of our experiment.
These results are made up of the lower and upper limits of
99.9% confidence interval calculated using the T-
distribution (see tables 2-4).

Table 2: Test Results for RSA Encryption Scheme

RSA Key Key Generation Time Encryption Time Decryption Time
(milliseconds) (milliseconds) (milliseconds)
1024 1312.7 £190.8 166.9 £ 46.3 15704
2048 6804.6 + 2540.6 290.2 £ 29.8 1224 +£9.1
3072 32108.0 + 18947.7 3105+ 755 293.2+71.8
7680 322843.0 + 233809.0 352.1 +154.1 2932.8 +44.7
15360 N/A N/A N/A
Table 3: Test Results for Elliptic Curve EIGamal Encryption Scheme
. Key Generation Time Encryption Time Decryption Time
Elliptic Curve y(milliseconds) (mi{IFi)seconds) (minIFi)seconds)
P-160 198.6 £12.5 179+49 15.7+0.1
P-224 208.3+ 134 95.9+£6.8 18.7+55
P-256 24354222 35.1+6.1 21.1+£6.8
P-384 294.0 £ 26.5 749+£7.1 47.7+3.2
P-521 447.8 £90.9 138.2+4.9 109.9+£0.3

Table 4: Test Results for Menezes-Vanstone Elliptic Curve Encryption Scheme

Key Generation Time

Encryption Time

Decryption Time

Elliptic Curve (milliseconds) (milliseconds) (milliseconds)
P-160 198.6 £12.5 157+ 0.4 155+04
pP-224 208.3+13.4 18.8 £ 10.0 17.2+£8.0
P-256 2435+22.2 25.0+5.6 20.3+6.4
P-384 294.0+26.5 50.1+5.4 476+3.0
P-521 447.8 +90.9 109.9+2.9 108.5+5.3

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BNES)

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

5.2 Analysis of Test Results

Key Generation Time

In RSA, the generation of the prime numbers is a crucial
sub-process, which requires generating random numbers
and testing for primality, a highly probabilistic procedure.
Consequently, the times of execution for RSA key

generation are not always the same even for the same key
length; occasionally it can be very long. Nevertheless, this
time depends on the key size, but does not depend on the
size of the input data. The measured values for the
Flexiprovider RSA implementation range from 1312.7ms
— 322843ms (figure 10 below). Typically, for the
recommended 1024-bit key, the time is 1312.7+190.8
milliseconds.

Key Generation Times

400000 -
322843
300000 -
200000 -
100000 -
32108
1312.7 6804.6
O T T T 1

RSA1024 RSA2048

RSA3072 RSA7680

Figure 10: Key Generation Time (milliseconds)

In the case of our ECC implementations, generation of
new common parameters is difficult and often results in
curves that are susceptible to certain specialized attacks.
Hence, for real life applications, certain curves with
reliable parameters have been recommended. They are
believed to enhance interoperability between disparate
systems, a desirable quality for the applications
programmer. The time for key generation in ECC depends

500 -

on the key size, the type of ECC and the usage of pre-
computed tables, an efficiency factor included in some
implementation for scalar point multiplication, the most
dominant operation in elliptic curve field operation.
Measured values for the ECP (in this case ECEG and
MVEC) key pair generation range from 198.6ms to
447.8ms (figure 11 below). Typically, that is, for the
recommended 160-bit key, this time is 198.6 £ 12.5ms.

Key Generation Times 447.8
400 -
294
w0 243.5
198.6 208.3
200 -
100 -
0 . | | |
ECP160 ECP224 ECP256 ECP384 ECP521

Figure.11: Key Generation Time (milliseconds)

Our comparison revealed that key pair generation for the
ECC systems outperforms RSA at all key lengths, and is
especially apparent as the key length increases. ECC can
create the private/public key pair in superior speed to
RSA comparable key lengths. This is, however, so
because ECC does not have to devote resources to the
computationally intensive generation of prime numbers.
ECC key pair generation time grows linearly with key

sizes, while that of RSA grows exponentially. This
conclusion is obvious from figures 10 and 11 respectively.

Encryption Time

The time lapse for RSA encryption depends on the key
size, but does not depend on the size and content of the
data to be encrypted. The value of the exponent used by
our provider is e=65537, which is recommended for the

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BE{|

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

1024-bit key in commercial use today. The measured
times for 100 bytes of data range from 166.9ms to
352.1ms.

Encryption time with ECC, however, relies on the key
size, the algorithm type, and the size of the data to be
encrypted. But for the increased storage requirement, the
use of pre-computed tables is highly recommended as this

speed up the elliptic curve operation more than twice.
Encryption times with MVEC appear to be superior when
compared to ECEG. Using 100 bytes of input data, the
measured values for MVEC range from 15.7ms to
109.9ms, while that of ECEG ranges from 17.9ms to
138.2ms (figure 12 below).

Encryption Times

400 - 352.1
5902 310.5 -
300 -
500 11669 1382
"“109.9
95.9 74.9
100 - 351 9 501
17.9 15.7 |_| 18.8 1 25 |—|
0 = VS N T s Y O N B B B B N
™ Q Q) ™ ™ Y © o \) ™ ™ . N
o Q M A \») \e S RSl R
VSR SIS EEE
T FIFIFFITFTTEILTS N\
$ FEHF I oIS ES

Figure 12: Encryption Ti

It is obvious from figure 12 that encryption with ECEG
and MVEC are superior to that with RSA. The fastest
encryption, however, is our MVEC implementation. This
is true for all values of the key lengths considered.

Decryption Time

mes (in milliseconds)

Decryption time for the RSA depends on the key size, but
does not depend on the size and content of the input data.
It is worth noting here that the Chinese Remainder
Theorem (CRT) was used to facilitate the decryption
operation. Measured values for 100 bytes of input data
ranges from 15.7ms — 2932.8ms (figure 13 below). The
RSA15360 is not considered in this performance
evaluation because it is not practical.

Decryption Times

3500
3000
2500
2000
1500
1000

500 122.4

1

15.7

2932.8

293.2
[1]

RSA1024 RSA2048

Figure 13: RSA Decryptio

Decryption time for ECC, on the other hand, depends on
the key size, the algorithm type, the size of the input data,
but does not depend on the usage of pre-computed tables.
Decryption times with MVEC appear to be superior
compared to ECEG. Using 100 bytes of data size, the
measured values for MVEC range from 15.5ms to

RSA3072 RSA7680

n Times (milliseconds)

108.5ms, while that of ECEG ranges from 15.7ms to
109.9ms (figure 14 below).

Our analysis reveals that all the three algorithms perform
at equal rate for the lowest security level. But as the key
sizes increase ECEG and MVEC fared better at almost

ISSN: 204

9-3444 © 2012 - IJET Publications UK. All rights reserved. BINsp)

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

equal rate. However, at the 521-bit key length, MVEC

decryption time was superior to that of ECEG.

Decryption Times

120 - 109.9 108.5
100 -]
80 -
60 - 477 476
40 -
15.7 155 187 172 20.3
20 -
o] 11 Il
Q Q ™ N o ™
& o\b e”” o”” e”" o”" 6°°° <3>°° 6@'\ &
& & & SIS N
A MR- S SR & & E S

Figure 14: ECP (ECEG and MVEC) Decryption Times (in milliseconds)

6. SIZE OF ENCRYPTED DATA FILES

The size of the encrypted data for RSA depends on the
size of the key and the size of input data. Previous
research efforts in this area revealed that the size of
encrypted data file is equal to the size of the RSA
modulus (Soram and Khomdram, 2009). The results we
obtained with the Flexiprovider JCE were consistent with
this submission. In this RSA implementation, the size of
the encrypted data file is always equal to the modulus in
all test cases, a phenomenon that results in considerable
bandwidth savings. However, there is a huge limitation
placed on size of the input data to be encrypted. The data
to be encrypted is required to be smaller than the modulus
in each case.

On the other hand, for the Elliptic Curve ElGamal
Encryption scheme (ECEG) the size of encrypted data
depends on the key size and the input data size. Also, the
maximum size of data that can be encrypted in one step
depends on the key size, a limitation that makes it

practically impossible for considering ECEG for large
data size encryption. This scenario also holds for
Menezes-Vanstone Elliptic Curve Encryption scheme
(MVEC), but in this case the size of the encrypted data
file appears to be far smaller in size compared to ECEG
for all key lengths. This implies MVEC is far more
superior to ECEG and RSA on all counts, and therefore
suitable for implementation on various platforms, even
the constrained environments.

Our Comparison further revealed that MVEC offers
considerable bandwidth savings in that the encrypted data
size is larger than the input data size by a factor of 0.5 and
this scale linearly as the key size increases. RSA on the
other hand, scales poorly as the key size increases. For
instance, the encrypted data size for RSA-7680-bit and
15360-bit keys is 960 bytes and 1920 bytes respectively
compared to MVEC-384 bits and MVEC-521 bits keys
with encrypted data size of 271 bytes and 321 bytes
respectively (see table 5 and figure 15 below).

Table 5: Size of encrypted data when making comparison between RSA and ECC

Common key sizes Size of Data to be Encrypted data size Encrypted data size Encrypted data size
(bits) encrypted (byte) with RSA (byte) with ECEG (byte) with MVEC (byte)
ECC160=RSA1024 100 128 288 145
ECC224=RSA2048 100 256 342 170
ECC256=RSA3072 100 384 387 196
ECC384=RSA7680 100 960 485 243
ECC521=RSA15360 100 1920 525 263

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BRI}

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

Size of Encrypted Data

2500 -
2000 - 120
1500 -
960
1000 -
485 525
384 387
0 128 288 145 256 342 170 196 243 263
oo nldalllln nlllln
S N N S A 6 o b NN
I F I F SIS TS

Figure 15: Size of Encrypted Data (bytes)

7. CONCLUSION

Public-key encryption can be used to eliminate problems
involved with conventional encryption. However, it has
not managed to be as widely accepted as conventional
encryption because it introduces a lot of overheads.
Therefore, it is very important to find ways to reduce the
overheads yet not sacrificing on other aspects of security
so that the desirability in public-key can be exploited.

We have described ECC, which is a promising candidate
for the next generation public-key cryptosystem.
Although ECC’s security has not been completely
evaluated, it is expected to come into widespread use in
various fields in the future.

After comparing the RSA and ECC ciphers, the ECC has
proved to involve much less overheads compared to RSA.
The ECC has been shown to have many advantages due to
its ability to provide the same level of security as RSA yet
using shorter keys. However, its disadvantage which may
even hide its attractiveness is its lack of maturity, as
mathematicians believed that enough research has not yet
been done in ECDLP.

Also, we believed that even though both systems are
valid, the RSA is better than ECC for now, as it is more
reliable because its security can be trusted more.
However, the future of ECC looks brighter than that of
RSA as today’s applications (smart cards, pagers, and
cellular telephones etc) cannot afford the overheads
introduced by RSA. Finally, both systems can be

considered as good given the low success rate associated
with attacking them.

REFERENCES

[1] Alese, B.K. (2000). Vulnerability Analysis of
Encryption/Decryption techniques of compute
Network security. Master’s Thesis, Federal

University of Technology, Akure, Nigeria.

[2] Berta, 1.Z., and Z. A. Mann (2002). Implementing
Elliptic Curve Cryptography on PC and Smart Card,
Periodica Polytechnica Ser. El. Eng. Vol 46 NO 1-2,
PP 47.

[3] Brown, M., D. L. Hankerson, J. L_opez and A.
Menezes (2001). Software implementation of the
NIST Elliptic curves over prime fields. In Progress
in Cryptology - CT-RSA, D. Naccache, Ed.,vol. 2020
of Lecture Notes in Computer Science, pp. 250-265.

[4] Certicom Corp., (2004). An elliptic curve
cryptography (ecc) primer. White paper, Certicom.

[5] Certicom Press Release (2002). Certicom announces
Elliptic Curve cryptosystem (ECC) ChallengeWinner.

November 6, 2002.
http://www.Certicom.com/about/pr/02/021106 ecc
winner.html

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BEES¥I

http://www.certicom.com/about/pr/02/021106_ecc_winner.html
http://www.certicom.com/about/pr/02/021106_ecc_winner.html

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

[6] Certicom Corp., (2000), Standards for Efficient
Cryptography, SEC 1: Elliptic Curve Cryptography.
http://www.secg.org/drafts.htm.

[7] Diffie, W. and M. E. Hellman (1976). New directions
in cryptography. IEEE Transactions on Information
Theory, Vol. 22, No. 6, pp. 644-654.

[8] Friedman, W.F. (1987). The Index of Coincidence
and Its Applications in Cryptography, Riverbank
Publication No. 22, Riverbank Labs, 1920. Reprinted
by Aegean Park Press.

[9] FIPS 113, National Institute of Standards and
Technology (formerly National Bureau of Standards),
1985. FIPS PUB 113: Computer Data Authentication,
May 30.

[10]Rabah, K. (2005a). Theory and implementation of
elliptic curve cryptography. Journal of applied
sciences, Vol 5: 604-633.

[11]Rabah, K. (2005b). Elliptic curve ElGamal
Encryption and signature Schemes. Information
technology journal,4(3): 299-306.

[12] Rabah, K. (2005c). Implementation of Elliptic curve
Diffie-Hellman and EC Encryption schemes.
Information technology journal ,4(2): 132-139

[13]Rabah, K. (2006). Implementing Secure RSA
Cryptosystem Using Your Own Cryptographic JCE
Provider. Journal of Applied sciences, 6(3); 482-510.

[14]Robshaw, M. J. B. and Y. L. Yin (1997). Elliptic

Curve Cryptosystems.
http://www.rsasecurity.com/rsalabs/ecc/elliptic
curve.html.

[15] Stallings, W. (2003). Cryptography and Network
Security: Principles and Practice, 3" Prentice Hall,
New Jersey.

[16] Systronic Inc. Bruce Boyes. Why use java?.
www.practicalembeddedjava.com/language/whyuseja

va.pdf. 8.1,

[17]Trappe. W. and L. C. Washington. (2002).
Introduction to Cryptography with Coding Theory,
Prentice Hall, New Jersey.

[18] Weil, N. (1998). U.S. govt.’s encryption standard
cracked in record time. Network World.
http://www.networkworld.com/news0720des.html

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. RIS

http://www.secg.org/drafts.htm
http://www.rsasecurity.com/rsalabs/ecc/elliptic%20curve.html
http://www.rsasecurity.com/rsalabs/ecc/elliptic%20curve.html
http://www.practicalembeddedjava.com/language/whyusejava.pdf.%208.1
http://www.practicalembeddedjava.com/language/whyusejava.pdf.%208.1
http://www.networkworld.com/news0720des.html

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

APPENDIX A
Screen Shots of Interfaces showing some Selected Outputs

The screenshot below shows the ciphertext when 521-bits key is used with the MVEC encryption transformation.

<[MEMEZES-VANSTOME ELLIPTIC CURVE ENCRYPTIOMN SCHEME == ==
File Options Help

EE0932135152320001961 7523090516301 2362233405267 30021052503258686377451 04003572571 740226025012462405822322828936731 |~ |
5888753118247 343308901 2177 36945880595065356182633157006997061293495201113458964582542458030996157613794539137526
S1025672835801462164388372887206713800661600619407390234712972970793614954250589468207350432847732844151958342365173
122219551030911090791726166749023158972316014746944965486461717711913258939656022254831394519023125831604589336931
SE05344334002821 32030095871 463361 747661 20640801064274750228657209221 3239022543201 6064226200451 9420306802621 7434532
103076666 85354334250291850366812101508472635815209612376244597138216402363898736834

| ENCRYPT | | DECRYPT | | DETAILS | | CLOSE |

The screenshot below shows the measured performance when 521-bits key is used with the MVEC encryption
transformation.

=] MENEZES-VAMNSTOMNE ELLIPTIC CURVE ENCRYPTION SCHEME == =S
File Options Help

E Measured Performance

Key Generation Time : 1779.0 milliseconds

Encryption Time : 330.0 milliseconds

Decryption Time : 352.0 milliseconds

PlainText Size : 100 byies

CipherText Size : 262 bytes

The screenshot below shows the ciphertext when 521-bits key is used with the ECEG encryption transformation.

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. RIS

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

=.| ELLIPTIC CURWVE ELGAMAL ENCRYPTION SCHEME == ===

File Options Help
2034550523745 30543123435001 3050641 352076453344000404645156166588637 34121 3558280321 245203063771 3243461004741 3063 | =]
280887919818287 5497 7706685111840983575832318686954742488755342411 3338863480254 21682660150449264831304114701605
12483981031 24964861 2494228350769055401957423264552938546856314195951372824004363384425370983762574579507622375
5838318595261 45941 36662911 3959606910741 7680310545304732207555118042859919173330916053352309678720021 753835340
547 24289764671386337523699403758950412032528920669402997441511259578077451436426701937914897831211634840907567
9373726827 2347823226851 79937016510933927 705457 29360486792198762737150637202245462757242516698735920702506431 22
623753913641875947 80004731 406956060955646347 2492973744721 391549846561 72107 28927569032031 2501 08137789581966589
325072783115463864571 2426811889671 719357851 075658307 488993521 394020495804932476902161 71651 312438499693220743046
9820711 27670337741 356724394531 9940818247472131311346723496738167422845nulinull]

| ENCRYPT | | DECHRYPT | | DELAILS | | CLOSE |

The screenshot below shows the measured performance when 521-bits key is used with the ECEG encryption transformation.

= | ELLIPTIC CURWVE ELGAMAL EMCRYPTION SCHEME =i ==
File Options Help

- | asured Performance

Hey Generation Time : 1107.0 milliseconds

Encryption Time : 297.0 milliseconds

Decryption Time : 212.0 milliseconds

PlainText Size : 100 byies

CipherText Size : 527 bytes

The screenshot below shows the ciphertext when 3072-bits key is used with the RSA encryption transformation.

=:| RSA Encryption Scheme =l s
File Options Help
E=4<EA—MNRBEK OUEFa-A Al £k?-a6129 AM %, p™8, “aT- +=v WOU " JEESSae_-~@zMi|FI{AEx+ _aA TDI'S EqEF TA0 % -

CT AT ASAW A=A E e YOS &2b =akw 0= zEa AECSG TMRPE asu$.k AOPGFO— 0. J }=yE xE plEamiyubl pTEYOY+EkEhg
- 0% 1jo01 Az ES"]2g0= " MNATIEIE=Y &/E -O'aj=fowads$t... ObQ BOYP=c e™Euc “EM clUek E&"?RkK
EIS6USET=_ n+=0ouBT98ZHW | i#U62RE"RA W ~80bY- L@t EE tAIYARKE=<6aUT ®kieT=6PXT

| Encrver || pDECRYPT || DETALS || cLosE |

The screenshot below shows the measured performance when 3072-bits key is used with the RSA encryption transformation.

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved. BINsy

International Journal of Engineering and Technology (IJET) — Volume 2 No. 9, September, 2012

| £ RSA Encryption Scheme
File Options Help

=N EoR(E%3

Measured Performance

Key Generation Time : 56799.0 milliseconds

Encryption Time : 531.0 milliseconds

Decryption Time : 655.0 milliseconds

PlainText Size : 100 bytes

CipherText Size : 384 hytes

ISSN: 2049-3444 © 2012 — IJET Publications UK. All rights reserved.

1568

