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ABSTRACT 
 

The introduction of public-key cryptography by Diffie and Hellman in 1976 was an important watershed in the history of 

cryptography. The work sparked off interest in the cryptographic research community and soon several public-key schemes 

were proposed and implemented. The Rivest, Shamir and Adleman (RSA), being the first realisation of this abstract model, is 

the most widely used public-key scheme today. However, increased processing power and availability of cheaper processing 

technology occasioned by the exponential growth in digital technology has generated some security concerns, necessitating 

the review of security parameters for enhanced security. Enhanced processing power requirement does not favour the present 

class of ubiquitous mobile devices that are characterised by low power consumption, limited memory and bandwidth as they 

may not be able to run this cryptographic algorithm due to computational burden associated with long key lengths. And since 

future increase in key lengths looks likely given the current technological developments, Elliptic Curve Cryptography (ECC) 

has been proposed as an alternative cryptosystem because it satisfies both security requirements and efficiency with shorter 

key lengths. 

 

This research work focuses on the comparative analysis of RSA Encryption algorithm, ElGamal Elliptic Curve Encryption 

algorithm and Menezes-Vanstone Elliptic Curve Encryption algorithm. These elliptic curve analogues of ElGamal Encryption 

scheme were implemented in Java, using classes from the Flexiprovider library of ECC. The RSA algorithm used in the 

comparison is the Flexiprovider implementation. Performance evaluation on the three algorithms based on the time lapse for 

their Key generation, encryption and decryption algorithms, and encrypted data size was carried out and compared. The 

results show that our elliptic curve-based implementations are more superior to the RSA algorithm on all comparative 

parameters. 
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1. INTRODUCTION 

 

Public-key cryptography was originally invented as an 

elegant solution to the problems associated with 

Symmetric-key cryptography. Since Its introduction in 

1976 by Diffie and Hellman, numerous public-key 

schemes have been proposed and implemented 

(Rabah,2005a), each relying on the difficulty of a 

classical mathematical problem such as Integer 

Factorization Problem (IFP), Discrete Logarithm Problem 

(DLP), Elliptic Curve Discrete Logarithm Problem 

(ECDLP) etc. However, over the years, with the increase 

in processing power of computers, there has been a 

reduction in the work factor required to solve IFP and 

DLP problems (Berta and Mann, 2002). As a result, key 

sizes grew to more than 1000-bits so as to attain a 

reasonable level of security. In constrained environments, 

however, carrying out thousand-bit operations is 

impractical. Therefore, a matter of growing importance in 

cryptography is the need for algorithms with low resource 

requirements that can be deployed on resource-

constrained ubiquitous devices. This explains why other 

public-key methods would be welcomed, Elliptic Curve 

Cryptosystem (ECC) being a probable candidate.  

Elliptic curves are the basis for a relatively new class of 

Public-key schemes. It is predicted that Elliptic Curve 

Cryptosystems (ECC) will replace many existing schemes 

in the near future. However, the complicated 

mathematical background of ECC results in more 

sophisticated algorithms, which raises the question 

whether the required computational power to run the ECC 

algorithm would be smaller compared to that of RSA. 

This opens up new vista for comparative studies on the 

performance of RSA and ECC (Certicom, 2002, 2004). 

 

Literature search has shown that no work exist on the 

implementation and  comparison of Rivest, Shamir and 

Adleman Encryption Scheme (RSA), Menezes-Vanstone 

Elliptic Curve Encryption Scheme (MVEC), and Elliptic 

Curve ElGamal Encryption Scheme (ECEG). And So far 

no standards have been defined for Elliptic Curve 

Encryption Scheme (ECES). The only standard specified 

in most documents is the Elliptic Curve Integrated 

Encryption Scheme (ECIES), which is a hybrid scheme, 

combining the best features from asymmetric and 

symmetric cryptosystems. Hence, it is still a research 

question whether ciphers based on elliptic curves are ripe 

enough to be trusted for deployment in commercial 
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products, and probably be adopted as a de facto standard 

for security on the internet. 

 

The Elliptic Curve ElGamal Encryption protocol and the 

Menezes-Vanstone Elliptic Curve Encryption protocol 

consist of three main algorithms: key pair generation, 

encryption and decryption. In order to reach the goals of 

implementing these protocols, several functions necessary 

for their construction were created. Performance 

evaluations were conducted based on the time lapse for 

these algorithms and the RSA encryption algorithm. Five 

test runs were carried out for each protocol on a 100 bytes 

text data. The results obtained were juxtaposed based on 

standard parameters such as security level providing key 

sizes. The size of ciphertext generated by each protocol 

was noted and compared. 

 

The security levels for the RSA includes: 1024-bit, 2048-

bit, 3072-bit, 7680-bit and 15360-bit key sizes, and those 

of ECEG and MVEC algorithms includes: 160-bit, 224-

bit, 256-bit, 384-bit and 521-bit key sizes. These key sizes 

are taken from the National Institute of Standards and 

Technology (NIST) guidelines for public key sizes with 

equivalent security levels (Alese, 2000).  

 

The existing RSA Encryption algorithm benchmarked 

against these implementations is from the Flexiprovider, a 

Cryptographic Service Provider.  

 

Entities participating in any of these protocols are 

required to generate a pair of public and private keys 

using the appropriate key pair generation algorithm. The 

public key generated is used for the encryption operation 

while the private key is used for the decryption operation. 

Encryption with ECEG is accomplished using the 

following encryption algorithm: 

 

INPUT: Elliptic curve domain parameters (p, E, G, n), 

public key Q 

              Plaintext M. 

OUTPUT: ciphertext (C1, C2) 

Represent the message M as a point Pm in E(Fp). 

Select k R [1, n-1] 

Compute C1=kG. 

Compute C2=Pm + kQ 

Return (C1, C2) 

 

The MVEC encryption algorithm is a variant of this 

algorithm, employing the use of “masking” instead of 

“point embedding” as in the case of ECEG. The 

encryption function in each case is a bijection. Thus the 

original message can be recovered from the encrypted 

result by applying its inverse transformation (decryption 

algorithm) with the appropriate trapdoor information. 

 

A software version of the ElGamal Elliptic Curve 

Encryption protocol and that of Menezes-Vanstone 

Elliptic Curve Encryption protocol were implemented. A 

Comparison between these protocols and the RSA 

protocol was established. The implementation 

environment for the chosen algorithms is Java JDK 6 

update 19, and the platform for our experiment is 

Windows Vista Home Basic, running on Intel Pentium 

Dual Core 1.6GHZ processor and 512MB of RAM 

(Brown et al. 2001) 

 

2. IMPLEMENTATION AND 

COMPARATIVE ANALYSIS 

 

2.1 Implementing Elliptic Curve Systems 
 

Prior to the implementation of any elliptic curve systems, 

several choices have to be made concerning the 

underlying finite field, elliptic curve, and cryptographic 

protocols. More elaborately, these choices include the 

underlying finite field, representation for the finite field 

elements, algorithms for performing finite field 

arithmetic, choice of an appropriate elliptic curve, 

representation for the elliptic curve points, algorithms for 

performing elliptic curve arithmetic (windows methods in 

affine or projective coordinates), choice of elliptic curve 

cryptographic protocol and algorithms for performing 

protocol arithmetic (Brown et al., 2001). Usually, these 

selections are influenced by security considerations, 

application platform, constraints of the particular 

computing environment, and constraints of the particular 

communications environment. Hence, it is difficult to 

decide on a single “best” set of choices. At best what is 

regarded as an optimal choice represents a compromise 

between efficiency and security. On the whole, care 

should be taken to ensure that the set of choices represent 

the nexus of the selection criteria. 

 

2.1.1 Choice of the Underlying Finite Field 
 

For any implementation of elliptic curve cryptosystems 

the choice of the underlying finite field is crucial. Almost 

always the choice is between GF(p) or GF(2
m
) for some 

prime p or some integers m respectively. The GF(p) is the 

choice for our implementation for the simplicity of its 

arithmetic which is implemented in terms of integers 

modulo p (Diffie and Hellman, 1976). 

 

2.1.2 Choice of Appropriate Elliptic Curve 
 

The choice of appropriate elliptic curve to use is one of 

the most crucial steps in developing an elliptic curve 

cryptosystem. Some elliptic curves are susceptible to 

attacks which makes them no more secure than existing 

systems today. According to (Rabah, 2005a) the most 

important qualities to look for in a curve includes: 

 

a. The curve has a large order #E(GF(p)). 

b. The curve is not susceptible to the MOV attack 

(super-singular curves) 

 

c. The curve order is divisible by a large prime factor. 



International Journal of Engineering and Technology (IJET) – Volume 2 No. 9, September, 2012 

                       ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved.  1554 

 

 

d. The large prime factor does not satisfy the divisibility 

property: Pc(  )/2
ni

-1, for small i. 

 

Two types of curves exist, namely 

 

a. Pseudo-random curves whose coefficients are 

generated from the output of a seeded cryptographic 

hash. 

 

b. Special curves whose coefficients and underlying 

field have been selected to optimize the efficiency of 

the elliptic curve operations. 

 

The security of any elliptic curve cryptosystems depends 

primarily on its order. Therefore, to make an ECC secure, 

we must first find curves which have an order satisfying 

the following requirements: 

 

 The order of the curve must be a large prime number. 

 

 The curve must be immune to special attacks. 

 

However, since not every elliptic curve offers strong 

security properties, and for some curves the ECDLP may 

be solved efficiently, and since a poor choice of the curve 

compromises security, standards organization like NIST 

and SECG published a set of recommended curves with 

well understood security properties. These curves have 

been recommended for use so as to facilitate 

interoperability between different implementations of a 

security protocol. Thus, for our implementation, the 

following curves from NIST and SECG were adopted 

(Certicom Corp., 2000). 

 

a. Prime 192v1 and Prime 256v1 from NIST. 

 

b. Secp160r1, Secp224r1, Secp384r1 and Secp521r1 

from SECG. 

 

2.1.3 Choice of Elliptic Curve Protocol 
 

Several elliptic curve protocols are in use today. Some 

have been standardized and packaged in a user-friendly 

way for developers to include in their applications. For 

instance, Legion of Bouncycastle and Flexiprovider have 

implemented and included the following elliptic curve 

protocols in their Java Cryptographic Extension (JCE): 

ECDSA, ECIES, ECDH and ECNR. There are no 

standards defined for the elliptic curve encryption 

scheme, and no implementations for the pure scheme exist 

for developers to use straight out-of-box. Hence, in this 

project we implemented the elliptic curve encryption 

protocol. In particular, we implemented the elliptic curve 

variants of ElGamal encryption algorithm, namely 

 

a. Elliptic Curve ElGamal Encryption Algorithm 

(ECEG), and 

 

b. Menezes- vanstone elliptic curve encryption 

algorithm (MVEC). 

 

c. Each scheme consists of three main algorithms: key 

pair generation, encryption and decryption 

algorithms. We implemented these algorithms in 

java, using classes from the Flexiprovider besides 

those we created (Rabah, 2005b, 2005c). 

 

3. STRUCTURE OF THE 

IMPLEMENTATION 
 

The implementation has been divided into two separate 

packages: ECEG and MVEC. The ECEG package 

contains all the classes needed to implement the Elliptic 

Curve ElGamal Encryption protocol, and the MVEC 

package contains classes needed to implement the 

Menezes-Vanstone Elliptic Curve Encryption protocol. 

The classes in each package are shown in figure 1. 

 

As can be seen from figure 1, the only difference between 

the ECEG package and the MVEC package are the 

classes: GFElement, PointGFP, EllipticCurve, 

EllipticCurveGFP, and IntegerFunctions. This is because 

the ECEG package implements the point embedding 

algorithm, which requires the above classes to facilitate 

the process. The MVEC which uses masking instead of 

point embedding requires the “Point class” to accomplish 

its task (Rabah, 2006). 

 

The common classes and those listed above are imports 

from the Flexiprovider package: 

“de.flexiprovider.common.maths”. Some of these classes, 

like ScalarMult and FlexiBigInt, were heavily overloaded 

in our implementations.  

 

The ECEG package contains all the classes used in the 

implementation of ElGamal Elliptic Curve Encryption 

algorithm. It consists of four classes which we constructed 

beside those we incorporated into our work from other 

sources. The classes we constructed are: 

ElGamalECCipher, ElGamalECKeyPair, 

ElGamalECKeyPairGenerator and ElGamalMain. The 

structure of these classes is as shown in figure 2 below. 
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Figure 1: Structure of Implementation 

 

 
 

Figure 2: Structure of ElGamal Elliptic Curve Encryption Implementation 

ElGamalECCiper 

ElGamalECKeyPair 

ElGamalECKeyPairGenerator 

ScalarMult 

CurveParams 

CurveRegistry 

Point 

FlexiBigInt 

GFElement 

IntegerFunctions 

PointGFP 

GFPElement 

EllipticCurve 

EllipticCurveGFP 

ECEG 

MVECCiper 

MVECKeyPair 

MVECKeyPairGenerator 

ScalarMult 

CurveParams 

CurveRegistry 

Point 

FlexiBigInt 

GFPElement 

MVEC

cC 

ECE

ElGamalECCipher 

+ElGamalECCipher() 

+getKeySize(): int 

+point2Int(Point): FlexiBigInt 

+subArray(byte[], int, int): byte[] 

+pointSubArray(Point[], int, int): 

Point[] 

+pubKey(FlexiBigInt, Point): Point 

+privKey(int, SecureRandom): 

FlexiBigInt 

+domainParameters(int): 

CurveParams 

+pointToInt(Point[]): FlexiBigInt[] 

+int2Ecpoint(FlexiBigInt): Point 

+toPointGFP(Point): PointGFP 

+getBytes(FlexiBigInt): byte[] 

+textToNum(File): FlexiBigInt[] 

+encrypt(FlexiBigInt[], Point): 

Point[] 

+decrypt(Point[], Point): String 

ElGamalMain 

+ElGamalMain() 

+elgamalMain(): void 

+concatenate(FlexiBigInt[], FlexiBigInt[]): 

FlexiBigInt[] 

+getCipherSize():long 

+concatenate(FlexiBigInt, FlexiBigInt): 

FlexiBigInt[] 

+viewCipher(Point[], Point): void 

ElGamalECKeyPair 

+ElGamalECKeyPair(FlexiBigInt, Point) 

+getPrivateKey(): FlexiBigInt 

+getPublicKey(): Point 

ElGamalECKeyPairGenerator 

+ElGamalECKeyPairGenerator(int, Point) 

+generateKeyPair():ElGamalECKeyPair 
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The MVEC package is the location for all the classes we 

use in the implementation of Menezes-Vanstone Elliptic 

Curve Encryption algorithm. The package consists of 

MVECCipher, MVECKeyPair, MVECKeyPairGenerator 

and MVECCipherMain classes, which we constructed 

besides the ones we use from the Flexiprovider library. 

The structure of these classes is as shown in figure 3 

below. Next we give the description of those classes that 

are common to the two packages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3: Structure of Menezes-Vanstone Elliptic Curve Encryption Implementation 

 

 

FlexiBigInt 
 

This is a wrapper class for Sun java “bigInt” class. It 

includes methods for addition, subtraction, multiplication 

and division of large numbers. It also contains methods 

for doing modular arithmetic such as modular 

exponentiation (modPow),        , and modular 

inversion (modInverse), 

 

          .       (1) 

 

The FlexiBigInt class is based on mutable arrays and thus 

there is no need for dynamic memory allocation. The 

public methods used from this class are shown in figure 4. 

ECEG 

ElGamalECCipher 

+ElGamalECCipher() 

+getKeySize(): int 

+point2Int(Point): FlexiBigInt 

+subArray(byte[], int, int): byte[] 

+pointSubArray(Point[], int, int): Point[] 

+pubKey(FlexiBigInt, Point): Point 

+privKey(int, SecureRandom): FlexiBigInt 

+domainParameters(int): CurveParams 

+pointToInt(Point[]): FlexiBigInt[] 

+int2Ecpoint(FlexiBigInt): Point 

+toPointGFP(Point): PointGFP 

+getBytes(FlexiBigInt): byte[] 

+textToNum(File): FlexiBigInt[] 

+encrypt(FlexiBigInt[], Point): Point[] 

+decrypt(Point[], Point): String 

 

ElGamalMain 

+ElGamalMain() 

+elgamalMain(): void 

+concatenate(FlexiBigInt[], FlexiBigInt[]): FlexiBigInt[] 

+getCipherSize():long 

+concatenate(FlexiBigInt, FlexiBigInt): FlexiBigInt[] 

+viewCipher(Point[], Point): void 

+mCurrentTime(): long 

ElGamalECKeyPair 

+ElGamalECKeyPair(FlexiBigInt, Point) 

+getPrivateKey(): FlexiBigInt 

+getPublicKey(): Point 

ElGamalECKeyPairGenerator 

+ElGamalECKeyPairGenerator(int, Point) 

+generateKeyPair():ElGamalECKeyPair 
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Figure 4: class structure of FlexiBigInt class 

 

IntegerFunctions 

 

This class is contained in 

“de.flexiprovider.common.math” package. It contains 

number-theory related functions for use with integers 

represented as int’s or FlexiBigInt objects. It includes 

methods for determining the Jacobi symbol, which we 

incorporated in our ECEG implementation. The public 

methods of this class used in our ECEG implementation 

are shown in figure 4.5. 
 

 
 

Figure 5: Class Structure for IntegerFunctions class 

 

ScalarMult 
 

Scalar multiplication is the most dominant operation in 

elliptic curve cryptography. This class, ScalarMult, 

implements the scalar multiplication algorithms described 

in chapter three. This is a class located in the 

Flexiprovider package: 

“de.flexiprovider.common.maths”. It includes methods 

for determining the NAF of an integer. The public method 

used from this class is shown in figure 6. 

 

 
 

Figure 6: Class Structure for the ScalarMult class 

 

CurveRegistry 

 

This class is located in “de.flexiprovider.ec.parameters” 

package of the Flexiprovider. It is a container class for 

some approved EC domain parameters for elliptic curve 

cryptography. The parameters consist of the chosen 

elliptic curve to be used, the point order of the curve, and 

the base point of the chosen curve etc. It supports domain 

parameters from ANSI X9.62, BrainPool, CDC group, 

SEC2 and NIST. For our implementations, we utilized 

domain parameters supported by SEC2 and NIST (see 

appendix B for list of parameters). 

 

Point 

 

MVEC 

MVECCipherMain 

+MVECCipherMain() 

+MvMain(): void 

+concatenate(FlexiBigInt[],FlexiBigInt[]): 

FlexiBigInt[] 

+getCipherSize():long 

+concatenate(FlexiBigInt,FlexiBigInt): FlexiBigInt[] 

+viewCipher(FlexiBigInt[],Point): void 

+mCurrentTime(): long 

MVECCipher 

+MVECCipher(int) 

+getKeySize(): int 

+point2Int(Point):FlexiBigInt 

+intSubArray(FlexiBigInt[],int,int): 

byte[] 

+pointSubArray(Point[],int,int):Point[] 

+pubKey(FlexiBigInt,Point): Point 

+privKey(int,SecureRandom):FlexiBigInt 

+domainParameters(int):CurveParams 

+pointToInt(Point[]):FlexiBigInt[] 

+getBytes(FlexiBigInt):byte[] 

+textToNum(File):FlexiBigInt[] 

+encrypt(FlexiBigInt[],Point):FlexiBigInt

[] 

+decrypt(FlexiBigInt[],Point):String 

MVECKeyPairGenerator 

+MVECKeyPairGenerator(int, Point) 

+generateKeyPair():MVECKeyPair 

MVECKeyPair 

+MVECKeyPair(FlexiBigInt,Point) 

+getPrivateKey(): FlexiBigInt 

+getPublicKey(): Point 

IntegerFunctions 

+jacobi(FlexiBigInt, FlexiBigInt): int 

+ressol(FlexiBigInt, FlexiBigInt): FlexiBigInt 

ScalarMult 

+multiply3 (FlexiBigInt, Point): Point 
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This is an abstract class located in 

“de.flexiprovider.common.ellipticcurves”. It implements 

points and their arithmetic on elliptic curves over finite 

prime fields as well as finite binary fields. 

 

PointGFP 

 

This class is a direct subclass of the Point class. It 

implements points and their arithmetic on elliptic curves 

over finite prime field. It includes methods for point 

addition, subtraction and multiplication in both affine and 

projective representations. This class is one of the focal 

points of our ECEG implementation since the finite prime 

field is our chosen underlying field. The public methods 

used from this class are shown in figure 7. 

 

GFElement 

 

This is an Interface contained in 

“de.flexiprovider.common.math.finitefields” package. It 

defines a finite field element and suggests methods for 

field operations on field elements such as addition, 

subtraction, multiplication and division (inversion). 

 
 

Figure 7: Class Structure for the abstract class Point and 

PointGFP class 

 

GFPElement 
 

This class is the implementation of the GFElement 

Interface. It implements an element of the finite prime 

field, and includes methods for field arithmetic such as 

addition, subtraction and multiplication etc. The public 

methods used from this class are shown in figure 4.8. 

 

 
 

Figure 8: Class Structure for GFPElement class 

 

EllipticCurve 
 

This class is the top-interface for elliptic curves over finite 

fields. It is located in the 

“de.flexiprovider.common.maths.ellipticurves” package. 

It stores the size of the underlying field as an instance of 

FlexiBigInt, and the curve parameters, a and b, as 

instances of GFElement. 

 

EllipticCurvesGFP 

 

This class implements the EllipticCurve class. It holds 

elliptic curves over finite prime fields in Weierstrass short 

form, and stores the field elements, a and b, as instances 

of FlexiBigInt respectively. The public methods used 

from this class are shown in figure 9. 

 

 
 

Figure 9: Class Structure for the abstract class EllipticCurve 

and EllipticCurveGFP class 

 

4. PERFORMANCE COMPARISON OF 

ECC AND RSA ENCRYPTION 

SCHEMES 

 

Robshaw and Yin (1997) compared the operational 

characteristics of RSA and ECC. In their article, they 

claimed that assuming all necessary parameters and 

PointGFP 

+PointGFP(GFPElement, GFPElement, FlexiBigInt) 

+addXAffin(): Point 

+addYAffin(): Point 

+onCurve(): boolean 

+subtract(): Point 

Point 

+ Point () 

+getE():EllipticCurve 

GFPElement 

+GFPElement(GFPElement, GFPElement, FlexiBigInt) 

+add(GFElement): GFElement 

+subtract(GFElement): GFElement 

+multiply(GFElement):GFElement 

+toByteArray(): byte[] 

+toFlexiBigInt(): FlexiBigInt 

+invert(): GFElement 

EllipticCurve 

+ getA(): GFElement 

+getB(): GFElement 

EllipticCurveGFP 

+EllipticCurveGFP(GFPElement, GFPElement, FlexiBigInt) 

+toString(): String 
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initialization processes have been performed encryption 

with ECC will be almost 8 times longer than with RSA, 

and decryption will be almost 6 to 7 times faster. These 

findings, however, contrasted that of Certicom 

Corporation who adjudged the most efficient 

implementation of ECC 10 times faster than comparable 

RSA systems. Next, we look at the theory behind RSA 

public key encryption to enable us perform our 

comparison (Stallings, 2003; Trappe and Washington, 

2002) 

 

4.1 Theory of RSA Cryptosystem 
 

The RSA is the most widely used cryptosystem today. 

Unfortunately, encrypting a message, m, involves 

exponentiation,         , a mathematical procedure 

which requires a lot of computations, making it 

impossible to achieve the speeds of private key systems 

such as DES, a phenomenon that is true for all public key 

systems (Hankerson et al., 2004). 

 

To set up a RSA cryptosystem, a user (say Alice) picks 

two large primes p and q and computes their product, 

    . The group used is the multiplicative group   
  ) of units in the integer modulo n. It is well known that 

the order of G is       )    ), where   denotes 

the Euler phi function. Clearly, Alice’s public key is the 

pair of integers {n, e} and her private key is d. 

 

4.2 RSA Key Generation 
 

An RSA key pair can be generated using Algorithm 4.1. 

The public key consists of a pair of integers (n, e) where 

the RSA modulus n is a product of two randomly 

generated (and secret) primes p and q of the same bit 

length. The encryption exponent e is an integer satisfying 

1 < e < φ and gcd (e, φ) = 1 where φ = (p−1)(q −1). The 

private key d, also called the decryption exponent, is the 

integer satisfying 1 < d < φ and ed ≡ 1 (mod φ). It has 

been proven that the problem of determining the private 

key d from the public key (n, e) is computationally 

equivalent to the problem of determining the factors p and 

q of n (Menezes et al., 1991); the latter is the integer 

factorization problem (IFP). 

 

Algorithm1 RSA key pair generation 

INPUT: Security parameter l. 

OUTPUT: RSA public key (n, e) and private key d. 

1. Randomly select two primes p and q of the same 

bitlength l/2. 

2. Compute n = pq and φ = (p−1)(q −1). 

3. Select an arbitrary integer e with 1 < e <φ and gcd 

(e, φ) = 1. 

4. Compute the integer d satisfying 1 < d <φ and ed ≡ 1 

(mod φ). 

5. Return (n, e, d). 

 

4.3 RSA Encryption/ Decryption Scheme 
 

RSA encryption schemes use the fact that m
ed

 ≡ m (mod 

n) for all integers m. The encryption and decryption 

procedures for the (basic) RSA public-key encryption 

scheme are presented as Algorithms 4.2 and 4.3. 

Decryption works because c
d
 ≡ (m

e
)

d
 ≡ m (mod n), as 

derived from expression. The security relies on the 

difficulty of computing the plaintext m from the 

ciphertext c = m
e
 mod n and the public parameters n and 

e. This is the problem of finding e-th roots modulo n and 

is assumed (but has not been proven) to be as difficult as 

the integer factorization problem (Weil, 1998). 

 

Algorithm 2: Basic RSA encryption 

INPUT: RSA public key (n, e), plaintext m ∈ [0, n−1]. 

OUTPUT: Ciphertext c. 

1. Compute c = m
e
 mod n. 

2. Return(c). 

 

 

Algorithm 3: Basic RSA decryption 

INPUT: RSA public key (n, e), RSA private key d, 

ciphertext c. 

OUTPUT: Plaintext m. 

1. Compute m = c
d
 mod n. 

2. Return (m). 

 

5. RUN-TIME COMPARISON BETWEEN 

ECC AND RSA 
 

To test and compare the performance characteristics of 

the RSA and ECC encryption algorithms, we 

independently tested each of the following three main 

components for timings: key generation, encryption and 

decryption. Timings are not absolute so each operation for 

every test parameter was run 20 times in order to reach 
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satisfactory level of confidence interval. A 99.9% 

confidence interval was calculated from the test results 

using the student T-distribution. We also measured the 

size of the data files used to store the encrypted results.  

 

The parameters of the operations are: 

 

a. the size of the applied key 

 

b. the size and content of the input data 

 

Tests were performed on Intel Pentium dual core 1.6GHZ 

machine with 512MB of RAM. The message used for 

encryption is the 100 byte text:” ECDLP is believed to be 

harder than both the Integer Factorization and Discrete 

Logarithm Problems”. The operating system is Windows 

Vista Home Basic. A selected output results for 

encryption with the implemented algorithms using 

different keys on the same input text are as presented in 

appendix A. 

 

Estimates are given for parameter sizes providing 

comparable levels of security for RSA and EC systems. 

The parameter sizes, also called key sizes, that provide 

equivalent security levels for RSA and EC systems are as 

listed in table .1. 

 
Table 1: Comparable key sizes between ECC and RSA 

 

ECC                                                  RSA 

160                                     1024 

224                                     2048 

256                                     3072 

384                                     7680 

512                                  15360 

 

These five specific security levels were selected because 

they represent the amount of work required to perform an 

exhaustive key search on the symmetric key encryption 

schemes: SKIPJACK, TRIPLE-DES, AES-Small, AES-

Medium, and AES-Large respectively. 

 

5.1 Test Results 
 

This section contains the test results of our experiment. 

These results are made up of the lower and upper limits of 

99.9% confidence interval calculated using the T- 

distribution (see tables 2-4). 

 
Table 2: Test Results for RSA Encryption Scheme 

 

RSA Key 
Key Generation Time 

(milliseconds) 

Encryption Time 

(milliseconds) 

Decryption Time 

(milliseconds) 

1024 1312.7 ± 190.8 166.9 ± 46.3 15.7 ± 0.4 

2048 6804.6 ± 2540.6 290.2 ± 29.8 122.4 ± 9.1 

3072 32108.0 ± 18947.7 310.5 ± 75.5 293.2 ± 71.8 

7680 322843.0 ± 233809.0 352.1 ± 154.1 2932.8 ± 44.7 

15360 N/A N/A N/A 

 
Table 3: Test Results for Elliptic Curve ElGamal Encryption Scheme 

 

Elliptic Curve 
Key Generation Time 

(milliseconds) 

Encryption Time 

(milliseconds) 

Decryption Time 

(milliseconds) 

P-160 198.6 ± 12.5 17.9 ± 4.9 15.7 ± 0.1 

P-224 208.3 ± 13.4 95.9 ± 6.8 18.7 ± 5.5 

P-256 243.5 ± 22.2 35.1 ± 6.1 21.1 ± 6.8 

P-384 294.0 ± 26.5 74.9 ± 7.1 47.7 ± 3.2 

P-521 447.8 ± 90.9 138.2 ± 4.9 109.9 ± 0.3 

 
 

 

 

Table 4: Test Results for Menezes-Vanstone Elliptic Curve Encryption Scheme 

 

Elliptic Curve 
Key Generation Time 

(milliseconds) 

Encryption Time 

(milliseconds) 

Decryption Time 

(milliseconds) 

P-160 198.6 ± 12.5 15.7 ± 0.4 15.5 ± 0.4 

P-224 208.3 ± 13.4 18.8 ± 10.0 17.2 ± 8.0 

P-256 243.5 ± 22.2 25.0 ± 5.6 20.3 ± 6.4 

P-384 294.0 ± 26.5 50.1 ± 5.4 47.6 ± 3.0 

P-521 447.8 ± 90.9 109.9 ± 2.9 108.5 ± 5.3 
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5.2 Analysis of Test Results 
 

Key Generation Time 

 

In RSA, the generation of the prime numbers is a crucial 

sub-process, which requires generating random numbers 

and testing for primality, a highly probabilistic procedure.  

Consequently, the times of execution for RSA key 

generation are not always the same even for the same key 

length; occasionally it can be very long. Nevertheless, this 

time depends on the key size, but does not depend on the 

size of the input data. The measured values for the 

Flexiprovider RSA implementation range from 1312.7ms 

– 322843ms (figure 10 below). Typically, for the 

recommended 1024-bit key, the time is 1312.7±190.8 

milliseconds. 
 

 
Figure 10: Key Generation Time (milliseconds) 

 

In the case of our ECC implementations, generation of 

new common parameters is difficult and often results in 

curves that are susceptible to certain specialized attacks. 

Hence, for real life applications, certain curves with 

reliable parameters have been recommended. They are 

believed to enhance interoperability between disparate 

systems, a desirable quality for the applications 

programmer. The time for key generation in ECC depends 

on the key size, the type of ECC and the usage of pre-

computed tables, an efficiency factor included in some 

implementation for scalar point multiplication, the most 

dominant operation in elliptic curve field operation. 

Measured values for the ECP (in this case ECEG and 

MVEC) key pair generation range from 198.6ms to 

447.8ms (figure 11 below). Typically, that is, for the 

recommended 160-bit key, this time is 198.6 ± 12.5ms. 

 

 
Figure.11: Key Generation Time (milliseconds) 

Our comparison revealed that key pair generation for the 

ECC systems outperforms RSA at all key lengths, and is 

especially apparent as the key length increases. ECC can 

create the private/public key pair in superior speed to 

RSA comparable key lengths. This is, however, so 

because ECC does not have to devote resources to the 

computationally intensive generation of prime numbers. 

ECC key pair generation time grows linearly with key 

sizes, while that of RSA grows exponentially. This 

conclusion is obvious from figures 10 and 11 respectively. 
 

Encryption Time 
 

The time lapse for RSA encryption depends on the key 

size, but does not depend on the size and content of the 

data to be encrypted. The value of the exponent used by 

our provider is e=65537, which is recommended for the 
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1024-bit key in commercial use today. The measured 

times for 100 bytes of data range from 166.9ms to 

352.1ms.  
 

Encryption time with ECC, however, relies on the key 

size, the algorithm type, and the size of the data to be 

encrypted. But for the increased storage requirement, the 

use of pre-computed tables is highly recommended as this 

speed up the elliptic curve operation more than twice. 

Encryption times with MVEC appear to be superior when 

compared to ECEG. Using 100 bytes of input data, the 

measured values for MVEC range from 15.7ms to 

109.9ms, while that of ECEG ranges from 17.9ms to 

138.2ms (figure 12 below). 

 
Figure 12: Encryption Times (in milliseconds) 

 

It is obvious from figure 12 that encryption with ECEG 

and MVEC are superior to that with RSA. The fastest 

encryption, however, is our MVEC implementation. This 

is true for all values of the key lengths considered.  

 

Decryption Time 

 

Decryption time for the RSA depends on the key size, but 

does not depend on the size and content of the input data. 

It is worth noting here that the Chinese Remainder 

Theorem (CRT) was used to facilitate the decryption 

operation. Measured values for 100 bytes of input data 

ranges from 15.7ms – 2932.8ms (figure 13 below). The 

RSA15360 is not considered in this performance 

evaluation because it is not practical. 

 
Figure 13:  RSA Decryption Times (milliseconds) 

 

Decryption time for ECC, on the other hand, depends on 

the key size, the algorithm type, the size of the input data, 

but does not depend on the usage of pre-computed tables. 

Decryption times with MVEC appear to be superior 

compared to ECEG. Using 100 bytes of data size, the 

measured values for MVEC range from 15.5ms to 

108.5ms, while that of ECEG ranges from 15.7ms to 

109.9ms (figure 14 below). 

 

Our analysis reveals that all the three algorithms perform 

at equal rate for the lowest security level. But as the key 

sizes increase ECEG and MVEC fared better at almost 
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equal rate. However, at the 521-bit key length, MVEC decryption time was superior to that of ECEG. 
 

 
Figure 14: ECP (ECEG and MVEC) Decryption Times (in milliseconds) 

 

 

6. SIZE OF ENCRYPTED DATA FILES 
 

The size of the encrypted data for RSA depends on the 

size of the key and the size of input data. Previous 

research efforts in this area revealed that the size of 

encrypted data file is equal to the size of the RSA 

modulus (Soram and Khomdram, 2009). The results we 

obtained with the Flexiprovider JCE were consistent with 

this submission. In this RSA implementation, the size of 

the encrypted data file is always equal to the modulus in 

all test cases, a phenomenon that results in considerable 

bandwidth savings. However, there is a huge limitation 

placed on size of the input data to be encrypted. The data 

to be encrypted is required to be smaller than the modulus 

in each case. 

 

On the other hand, for the Elliptic Curve ElGamal 

Encryption scheme (ECEG) the size of encrypted data 

depends on the key size and the input data size. Also, the 

maximum size of data that can be encrypted in one step 

depends on the key size, a limitation that makes it 

practically impossible for considering ECEG for large 

data size encryption. This scenario also holds for 

Menezes-Vanstone Elliptic Curve Encryption scheme 

(MVEC), but in this case the size of the encrypted data 

file appears to be far smaller in size compared to ECEG 

for all key lengths. This implies MVEC is far more 

superior to ECEG and RSA on all counts, and therefore 

suitable for implementation on various platforms, even 

the constrained environments. 

 

Our Comparison further revealed that MVEC offers 

considerable bandwidth savings in that the encrypted data 

size is larger than the input data size by a factor of 0.5 and 

this scale linearly as the key size increases. RSA on the 

other hand, scales poorly as the key size increases. For 

instance, the encrypted data size for RSA-7680-bit and 

15360-bit keys is 960 bytes and 1920 bytes respectively 

compared to MVEC-384 bits and MVEC-521 bits keys 

with encrypted data size of 271 bytes and 321 bytes 

respectively (see table 5 and figure 15 below). 

 

 

Table 5: Size of encrypted data when making comparison between RSA and ECC 

 
 

Common key sizes 

(bits) 

Size of Data to be 

encrypted  (byte) 

Encrypted data size 

with RSA (byte) 

Encrypted data size 

with ECEG (byte) 

Encrypted data size 

with MVEC (byte) 

ECC160=RSA1024 100 128 288 145 

ECC224=RSA2048 100 256 342 170 

ECC256=RSA3072 100 384 387 196 

ECC384=RSA7680 100 960 485 243 

 ECC521=RSA15360 100 1920 525 263 
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Figure 15: Size of Encrypted Data (bytes) 

 

 

7. CONCLUSION 
 

Public-key encryption can be used to eliminate problems 

involved with conventional encryption.  However, it has 

not managed to be as widely accepted as conventional 

encryption because it introduces a lot of overheads. 

Therefore, it is very important to find ways to reduce the 

overheads yet not sacrificing on other aspects of security 

so that the desirability in public-key can be exploited. 

 

We have described ECC, which is a promising candidate 

for the next generation public-key cryptosystem. 

Although ECC’s security has not been completely 

evaluated, it is expected to come into widespread use in 

various fields in the future. 

 

After comparing the RSA and ECC ciphers, the ECC has 

proved to involve much less overheads compared to RSA. 

The ECC has been shown to have many advantages due to 

its ability to provide the same level of security as RSA yet 

using shorter keys. However, its disadvantage which may 

even hide its attractiveness is its lack of maturity, as 

mathematicians believed that enough research has not yet 

been done in ECDLP. 

 

Also, we believed that even though both systems are 

valid, the RSA is better than ECC for now, as it is more 

reliable because its security can be trusted more. 

However, the future of ECC looks brighter than that of 

RSA as today’s applications (smart cards, pagers, and 

cellular telephones etc) cannot afford the overheads 

introduced by RSA. Finally, both systems can be 

considered as good given the low success rate associated 

with attacking them. 
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APPENDIX A 

 Screen Shots of Interfaces showing some Selected Outputs  

 

The screenshot below shows the ciphertext when 521-bits key is used with the MVEC encryption transformation. 
 

 
 

The screenshot below shows the measured performance when 521-bits key is used with the MVEC encryption 

transformation. 

 

 
 

 
 

The screenshot below shows the ciphertext when 521-bits key is used with the ECEG encryption transformation. 
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The screenshot below shows the measured performance when 521-bits key is used with the ECEG encryption transformation. 

 

 
 

The screenshot below shows the ciphertext when 3072-bits key is used with the RSA encryption transformation. 
 

 
 

The screenshot below shows the measured performance when 3072-bits key is used with the RSA encryption transformation. 
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