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ABSTRACT 

This study investigated the simulation performance from zero initial conditions across the transient and steady states of six different 

versions of fourth order Runge-Kutta schemes (RK41, RK42, RK43, RK44, RK45 & RK46-stable and unstable) on cases of linear and 

nonlinear dynamics. Validation cases were obtained from [1-3] including the periodically ( , 2,1.47)q g   and chaotically 

( , 4,1.5)q g  responding nonlinear excited pendulum at drive frequency of ( 2 3)D  . The simulated results of linear dynamics 

correlate quantitatively well for all the schemes when compared with the results reported by [1] except for RK44 which was reported 

less stable by [3]. However for a reduced simulation time step of 0.0025 the simulated results by RK44 improved drastically towards 

the exact results as well as the results prescribed by other schemes. The schemes performance replicate for the case of periodically 

behaving nonlinear pendulum. However the simulated results of the chaotic counterpart of the nonlinear pendulum lacked correlation, 

but all the schemes produced qualitatively the same Poincare section that is qualitatively the same as reported by [2]. Provided the 

scheme stability is guaranteed, the study results can be adopted in the characterization of dynamic systems. 
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1. INTRODUCTION 

The concept of oscillation system is a key universal 

phenomenon in diverse fields of study. In the online article 

posted by [4], oscillation can be described as a periodic 

fluctuation or back and forth movement between two objects. 

The device that experiences this back and forth movement is 

generally termed as oscillator. The importance of oscillators’ 

dynamics in Theoretical physics, Electrical/Electronic 

Engineering and Mechanical Engineering just to mention a few 

cannot be overemphasized. In theoretical physics, interesting 

efforts have been made by researchers in the field to 

characterize oscillator dynamics and their applications. The 

dynamics of coupled van der pol and Duffing oscillators as a 

typical coupled system with various attractors has been 

examined [5]. The results obtained showed that coupled system 

is rich in dynamic phases for various values of the system 

parameters. The author’s paper finally submitted that chaotic 

region posses islands of periodic windows exhibiting period-

doubling characteristics. The dynamic and synchronization 

characteristic of two unidirectional coupled double-well 

Duffing oscillators has been critically investigated [6]. 

Numerical simulations were carried out using fourth order 

Runge-Kutta and the results obtained imply evidence of 

transition to synchronization through a bistable state in which 

a torus co-exists with a cross-well chaotic attractor. Deductions 

made from this coexistence of periodic and chaotic attractor 

dynamic behaviour will be of immense applications for 

transport phenomenon in inertial ratchets. [7] Studied the 

nonlinear dynamics of plasma oscillations that is modelled by 

a forced modified Van der Pol Duffing oscillator. The 

bifurcation sequences obtained by the model were successfully 

performed through numerical method using fourth order 

Runge-Kutta. The outcome of the author’s study is of great 

benefit for control of high amplitude oscillations which are 

often the cause of instability in plasma physics. In the same 

vein, there has been a very robust research on the applicability 

of oscillator dynamics in the field of Electrical and Electronic 

engineering especially in the area of control. [8] Considered 

the chaos-based dynamics of a weak signal detection method 

with Duffing oscillator. The authors established that chaotic 

detecting approach is only useful for single periodic signal 

detection with very short frequency band whereas extremely 

difficult when the frequency band is large. In view of this 

shortcoming, the authors then proposed Empirical Mode 

Decomposition (EMD) method for analysis of the system 

dynamics. Studies from the literature informed that complex 

signals are often used in the digital processing of 

communication and radar systems. Such systems are prone to 

nonlinear dynamical behaviours. [9] Developed a new 

complex Duffing oscillator that can be employed in detection 

of complex signals using Monte-Carlo simulation technique. 

The study has shown that the developed system is capable of 

effectively detecting complex single frequency signals and 

linear frequency modulation signals. [10-14] papers have also 

demonstrated the usefulness of Oscillator’s system dynamics 

in the field of electrical and electronic technology. 

Furthermore, oscillator dynamics play prominent applications 

in mechanical engineering discipline. Frequency responses, 

bifurcation and chaos dynamics of a SDOF oscillator with 

different parameters of Bouc-Wen model have been studied 

[15]. In order to numerically simulate the hysteresis, the 

classical Runge-Kutta method is used. It has been shown in the 

study that domains where chaotic behaviour of the oscillator 

with hysteresis is possible can be found in planes defined by 

amplitude of external excitation and the hysteretic parameter. 
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The wide dynamical applications of oscillator systems in 

mechanical engineering have also been reinforced in [16-20] 

papers. In nonlinear dynamics, the utility of Runge-Kutta 

numerical simulation is a widely accepted technique. Runge-

Kutta methods are important family of implicit and explicit 

iterative methods [21]. They are generally used for temporal 

discretizations for the approximation of solutions of ordinary 

differential equations. Fourth order Runge-Kutta method has 

been found to be one of the most satisfactory Runge-Kutta 

methods for oscillator dynamics characterization. In [16], the 

dynamics of a coupled nonlinear system consisting of a Van 

der Pol oscillator coupled to a driven Duffing resonator have 

been examined using fourth order Runge-Kutta. Findings 

revealed that the system dynamic is highly chaotic and strongly 

depend on parameters variation. Similarly, numerical 

simulations of nonlinear oscillator systems have been 

performed using fourth order Runge-Kutta method with a 

constant step. Research results obtained by [17] showed that 

the dynamic parameter space diagram of the non-ideal Duffing 

oscillator is characterized by a vast quantity of periodic 

structure produced by Arnold tongues. [6-7] and many more 

literature works have equally demonstrated the general 

richness of results produced in oscillator dynamics 

characterization using fourth order Runge-Kutta as numerical 

simulation tool. 

 

Although [3] utilized the fourth order Runge-Kutta versions in 

Lorenz system, significant efforts have not been made in the 

literature on the choice of fourth order Runge-Kutta versions 

in numerical simulation of nonlinear oscillator dynamics. In 

view of this research gap, the present paper considers six 

different versions of fourth order Runge-Kutta schemes 

(RK41, RK42, RK43, RK44, RK45 & RK46-stable and 

unstable) for characterizing nonlinear oscillator dynamics.  

 

2. METHODOLOGY 

 

The present study utilised two existing oscillators (linear and 

non-linear). The linear oscillator is adopted from [1] while its 

nonlinear counterpart is adopted from [2]. Equation (1) 

described the linear oscillator under a step and ram excitations-

F (t) and equation (2) gives the description of the nonlinear 

non-dimensional and one dimensional governing equation of 

the damped, sinusoidally driven pendulum. It is important to 

note that q  is the damping quality parameter, g is the forcing 

amplitude, D  is the drive frequency and t represent time.

   

 

4 2000 ( )x x F t      

      (1) 

 Where: 

  

( ) 100.0; 0.0 0.10F t t   , 

( ) 1000.0 200.0; 0.10 0.20F t t t      and 

( ) 0.0; 0.20F t t    

2 1
sin( ) cos( )D

d d
g t

dt q dt

 
      

      (2)  

 

Simulation of equations (1) and (2) with Runge-Kutta scheme 

demands first order pair transformation under the assumptions 

( 1x linear displacement , 2x linear velocity ,

1 angular displacement  and 2 angular velocity 

). Under these transformations equations (3) & (4) and (5) & 

(6) are obtained correspondingly for the linear and non-linear 

oscillator. 

 

1 2x x


       

      (3) 

2 10.25 ( ) 500x F t x


      

      (4) 

1 2 


       

      (5) 

2 2 1

1
cos( ) sin( )Dg t

q
   


     

      (6) 

 

According to [22], the numerical solution of equations (1) and 

(2) can be sought using equation (7), with   being an 

incremental weighting function. The general form for  is 

given by equation (8) in which the slope estimate of   is used 

to extrapolate from an old value iy  to a new value 1iy   over a 

step size h. 

 

1i iy y h       

                  (7) 

1 21 2 n nc K c K c K      

      (8) 

 

The functions 1K  to 4K  for the fourth order Runge-Kutta 

scheme are given by equations (9) to (12). The corresponding 

predicting formula is given by equation (13) with time step- h
.  

1 ( , )i iK f x y      

      (9) 

2 2 21 1( , )i iK f x a h y b K      

               (10) 

3 3 31 1 32 2( , )i iK f x a h y b K b K         

                          (11) 

4 4 41 1 42 2 43 3( , )i iK f x a h y b K b K b K      

                (12) 

 1 1 1 2 2 3 3 4 4i iy y h c K c K c K c K       

                (13) 

 

 

The coefficients details as given in [3] that investigated 

stability of Runge-Kutta methods are provided in tables 1 and 

2 for the specific cases of fourth order Runge-Kutta scheme. 

 

 



International Journal of Engineering and Technology (IJET) – Volume 4 No. 8, August, 2014 

 

ISSN: 2049-3444 © 2014 – IJET Publications UK. All rights reserved. 446 

 
 

Table 1: Butcher’s tableu for general fourth order scheme 
 

0  0  0  0  0  

2a  21b  0  0  0  

3a  31b  32b  0  0  

4a  41b  42b  43b  0  

 
1c  2c  3c  4c  

        

Table 2: Coefficients for the selected six cases of Fourth order Runge-Kutta scheme. 

 

Coefficient 

Selected  Fourth order Runge-Kutta Scheme 

 

RK41 RK42 RK43 RK44 RK45 RK46 

2a  0.50000 0.33333 0.25000 -0.50000 0.50000 1.00000 

3a  0.50000 0.66667 0.50000 0.50000 0.00000 0.50000 

4a  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

21b  0.50000 0.33333 0.25000 -0.50000 0.50000 1.00000 

31b  0.00000 -0.33333 0.00000 0.75000 -1.00000 0.37500 

32b  0.50000 1.00000 0.50000 -0.25000 1.00000 0.12500 

41b  0.00000 1.00000 1.00000 -2.00000 -1.00000 -0.50000 

42b  0.00000 -1.00000 -2.00000 1.00000 1.50000 -0.50000 

43b  1.00000 1.00000 2.00000 -2.00000 0.50000 2.00000 

1c  0.16667 0.12500 0.16667 0.16667 0.08333 0.16667 

2c  0.33333 0.37500 0.00000 0.00000 0.66667 0.00000 

3c  0.33333 0.37500 0.66667 0.66667 0.08333 0.66667 

4c  0.16667 0.12500 0.16667 0.16667 0.16667 0.16667 

 

2.1 Simulation Parameters 

The two oscillators were simulated from the same initial 

conditions (0, 0). The linear oscillator total simulation period 

is 0.48-unit at constant time step of 0.02-unit to enable 

comparison of simulated results with the exact results reported 

by [1]. However the nonlinear oscillator was simulated for one 

case each of parameters ( , )q g combination leading to 

periodic ( , 2,1.47)q g  and chaotic ( , 4,1.5)q g   

responses as reported by [2] for fixed drive frequency

2 3D  , constant simulation time step ( 500)Dh T  

where 2D DT   . The simulation was executed for 2010-

excitation periods comprising 10-periods of transient and 

2000-peiods of steady solutions respectively.  

 

3. RESULTS AND DISCUSSION 

Table 3 refers. The displacement component of the simulated 

results for the linear oscillator dynamics by all the fourth order 

Runge-Kutta schemes compared quantitatively well with the 

exact results reported by [1] with the exception of the simulated 

results by RK44. However this observation agreed very well 

with the poor stability of this scheme (RK44) as reported by 

[3] when compared with its counterpart fourth order scheme. 

Similarly, table 4 provided the corresponding simulated 

velocity components of the linear oscillator dynamics that are 

quantitatively the same while figure 1 summarised the 

associated phase plots. Furthermore, tables 5, 6 and figure 2 

refer the simulated displacement and velocity results by RK44 

gravitate toward the corresponding exact result with decreasing 

simulation time step for all simulation time. This is suggestive 

that RK44 can simulate the dynamics of the linear oscillator 

accurately as any of its counterparts (RK41, RK42, RK43, RK5 
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and RK46) but at the expense of higher computation resources. 

The simulation time step must be relatively smaller and 

appropriate. Therefore, except it is solely necessary and 

affordable, it is not advisable to simulate system dynamics with 

RK44 because its use is prone to gross computational 

instability errors. 

Table 3: Comparison of the Exact and simulated results of linear oscillator dynamics (displacement component only) 

Simulation 

Time 

Exact  

Result 

Simulated Results by Fourth Order Schemes 

RK41 RK42 RK43 RK44 RK45 RK46 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.02 0.00492 0.00492 0.00492 0.00492 -0.00158 0.00492 0.00492 

0.04 0.01870 0.01869 0.01869 0.01869 0.00763 0.01869 0.01869 

0.06 0.03864 0.03862 0.03862 0.03862 0.02850 0.03862 0.03862 

0.08 0.06082 0.06079 0.06079 0.06079 0.05978 0.06079 0.06079 

0.10 0.08086 0.08083 0.08083 0.08083 0.09766 0.08083 0.08083 

0.12 0.09451 0.09447 0.09447 0.09447 0.13616 0.09447 0.09447 

0.14 0.09743 0.09741 0.09741 0.09741 0.16616 0.09741 0.09741 

0.16 0.08710 0.08709 0.08709 0.08709 0.17667 0.08709 0.08709 

0.18 0.06356 0.06359 0.06359 0.06359 0.15790 0.06359 0.06359 

0.20 0.02949 0.02956 0.02956 0.02955 0.10357 0.02955 0.02955 

0.22 -0.01005 -0.00995 -0.00995 -0.00996 0.01299 -0.00995 -0.00996 

0.24 -0.04761 -0.04750 -0.04750 -0.04751 -0.10556 -0.04750 -0.04751 

0.26 -0.07581 -0.07571 -0.07571 -0.07571 -0.23442 -0.07571 -0.07571 

0.28 -0.08910 -0.08903 -0.08903 -0.08903 -0.34878 -0.08903 -0.08903 

0.30 -0.08486 -0.08485 -0.08485 -0.08485 -0.42009 -0.08485 -0.08485 

0.32 -0.06393 -0.06400 -0.06400 -0.06399 -0.42108 -0.06400 -0.06399 

0.34 -0.03043 -0.03056 -0.03056 -0.03056 -0.33200 -0.03056 -0.03056 

0.36 0.00906 0.00887 0.00887 0.00888 -0.14693 0.00887 0.00888 

0.38 0.04677 0.04656 0.04656 0.04657 0.12110 0.04656 0.04657 

0.40 0.07528 0.07510 0.07510 0.07510 0.43763 0.07509 0.07510 

0.42 0.08898 0.08886 0.08886 0.08887 0.74822 0.08886 0.08887 

0.44 0.08518 0.08516 0.08516 0.08516 0.98459 0.08516 0.08516 

0.46 0.06463 0.06473 0.06473 0.06472 1.07538 0.06472 0.06472 

0.48 0.03136 0.03157 0.03157 0.03156 0.96067 0.03156 0.03156 

 

Table 4: Simulated results of linear oscillator dynamics (velocity component only). 

Simulation 

Time 

Simulated Results by Fourth Order Schemes 

RK41 RK42 RK43 RK44 RK45 RK46 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.02 0.48333 0.48333 0.48334 0.52501 0.48333 0.48334 

0.04 0.87161 0.87161 0.87162 1.07467 0.87161 0.87162 

0.06 1.08852 1.08852 1.08853 1.54649 1.08852 1.08853 

0.08 1.09146 1.09146 1.09146 1.81762 1.09145 1.09146 

0.10 0.87985 0.87985 0.87984 1.77410 0.87985 0.87984 

0.12 0.44616 0.44616 0.44614 1.28783 0.44616 0.44614 

0.14 -0.17346 -0.17346 -0.17349 0.28407 -0.17346 -0.17349 

0.16 -0.85719 -0.85719 -0.85723 -1.16474 -0.85719 -0.85723 

0.18 -1.47065 -1.47065 -1.47069 -2.87145 -1.47064 -1.47069 

0.20 -1.89324 -1.89324 -1.89327 -4.54151 -1.89323 -1.89327 

0.22 -1.99278 -1.99278 -1.99278 -5.75640 -1.99276 -1.99278 

0.24 -1.70060 -1.70060 -1.70057 -6.07295 -1.70058 -1.70057 

0.26 -1.07419 -1.07419 -1.07412 -5.17443 -1.07417 -1.07412 
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0.28 -0.23671 -0.23670 -0.23661 -2.91598 -0.23670 -0.23661 

0.30 0.64721 0.64722 0.64732 0.59576 0.64722 0.64732 

0.32 1.40382 1.40382 1.40391 4.95559 1.40381 1.40391 

0.34 1.88442 1.88442 1.88448 9.46372 1.88440 1.88448 

0.36 1.99456 1.99456 1.99457 13.19409 1.99453 1.99457 

0.38 1.71265 1.71264 1.71259 15.13017 1.71261 1.71259 

0.40 1.09413 1.09412 1.09402 14.35792 1.09410 1.09402 

0.42 0.26062 0.26061 0.26046 10.29037 0.26060 0.26046 

0.44 -0.62403 -0.62404 -0.62420 2.88453 -0.62404 -0.62420 

0.46 -1.38592 -1.38593 -1.38607 -7.19831 -1.38591 -1.38607 

0.48 -1.87532 -1.87532 -1.87542 -18.53867 -1.87529 -1.87542 

 

 

(a)                                                                                                                        (b) 

Figure 1: Phase plots of the linear oscillator dynamics with different selected Runge-Kutta scheme. 

 

Table 5: Comparison of the Exact and Simulated results (by RK44) of linear oscillator dynamics for different 

simulation steps (displacement component only). 

Simulation 

Time 

Exact 

Result 

Simulated Results by RK44 for different simulation steps 

0.02h   0.01h   0.005h   0.004h   0.0025h   

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.02 0.00492 -0.00158 0.00173 0.00336 0.00368 0.00415 

0.04 0.01870 0.00763 0.01374 0.01641 0.01690 0.01761 

0.06 0.03864 0.02850 0.03496 0.03716 0.03752 0.03799 

0.08 0.06082 0.05978 0.06227 0.06195 0.06178 0.06147 

0.10 0.08086 0.09766 0.09083 0.08600 0.08499 0.08344 

0.12 0.09451 0.13616 0.11488 0.10424 0.10221 0.09923 

0.14 0.09743 0.16616 0.12741 0.11105 0.10810 0.10389 

0.16 0.08710 0.17667 0.12215 0.10223 0.09884 0.09411 

0.18 0.06356 0.15790 0.09563 0.07648 0.07346 0.06935 

0.20 0.02949 0.10357 0.04831 0.03583 0.03417 0.03207 

0.22 -0.01005 0.01299 -0.01492 -0.01435 -0.01368 -0.01246 

0.24 -0.04761 -0.10556 -0.08387 -0.06507 -0.06138 -0.05601 
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0.26 -0.07581 -0.23442 -0.14498 -0.10606 -0.09930 -0.08984 

0.28 -0.08910 -0.34878 -0.18446 -0.12835 -0.11927 -0.10685 

0.30 -0.08486 -0.42009 -0.19109 -0.12614 -0.11628 -0.10309 

0.32 -0.06393 -0.42108 -0.15892 -0.09820 -0.08967 -0.07860 

0.34 -0.03043 -0.33200 -0.08923 -0.04842 -0.04353 -0.03756 

0.36 0.00906 -0.14693 0.00871 0.01458 0.01391 0.01236 

0.38 0.04677 0.12110 0.11848 0.07895 0.07168 0.06151 

0.40 0.07528 0.43763 0.21891 0.13172 0.11814 0.10003 

0.42 0.08898 0.74822 0.28782 0.16139 0.14332 0.11986 

0.44 0.08518 0.98459 0.30648 0.16036 0.14097 0.11640 

0.46 0.06463 1.07538 0.26404 0.12674 0.11006 0.08956 

0.48 0.03136 0.96067 0.16079 0.06511 0.05527 0.04392 

 

Table 6: Comparison of the simulated results by RK42 and RK44 of linear oscillator dynamics for different 

simulation steps (velocity component only). 

Simulation 

Time 

RK42 

Result 

Simulated Results by RK44 for different simulation steps 

0.02h   0.01h   0.005h   0.004h   0.0025h   

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.02 0.48333 0.52501 0.50937 0.49800 0.49536 0.49116 

0.04 0.87161 1.07467 0.98267 0.92899 0.91779 0.90076 

0.06 1.08852 1.54649 1.31759 1.20112 1.17819 1.14419 

0.08 1.09146 1.81762 1.42525 1.24830 1.21521 1.16717 

0.10 0.87985 1.77410 1.25160 1.04554 1.00918 0.95766 

0.12 0.44616 1.28783 0.74301 0.56677 0.53848 0.49997 

0.14 -0.17346 0.28407 -0.09433 -0.16103 -0.16725 -0.17302 

0.16 -0.85719 -1.16474 -1.13204 -1.00731 -0.97851 -0.93412 

0.18 -1.47065 -2.87145 -2.18233 -1.80857 -1.73746 -1.63417 

0.20 -1.89324 -4.54151 -3.02858 -2.39921 -2.28819 -2.13120 

0.22 -1.99278 -5.75640 -3.41589 -2.59494 -2.45835 -2.26932 

0.24 -1.70060 -6.07295 -3.14695 -2.27780 -2.14205 -1.95856 

0.26 -1.07419 -5.17443 -2.18635 -1.47698 -1.37651 -1.24582 

0.28 -0.23671 -2.91598 -0.63744 -0.32172 -0.29160 -0.25997 

0.30 0.64721 0.59576 1.25969 0.97797 0.91133 0.81121 

0.32 1.40382 4.95559 3.15916 2.16839 1.99613 1.75652 

0.34 1.88442 9.46372 4.66641 3.00062 2.73759 2.38275 

0.36 1.99456 13.19409 5.41347 3.28135 2.96745 2.55394 

0.38 1.71265 15.13017 5.13917 2.91582 2.61143 2.22048 

0.40 1.09413 14.35792 3.75829 1.93389 1.70936 1.43193 

0.42 0.26062 10.29037 1.40379 0.49245 0.41334 0.33050 

0.44 -0.62403 2.88453 -1.57045 -1.14765 -1.03677 -0.87427 

0.46 -1.38592 -7.19831 -4.63242 -2.66741 -2.35694 -1.94508 

0.48 -1.87532 -18.53867 -7.15779 -3.75035 -3.27386 -2.66338 
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Figure 2: Comparison of the displacement component of exact and RK44 solutions of linear oscillator dynamics. 

Figure 3 refers; there is good correlation of the simulated angular displacement and velocity components of the nonlinear pendulum 

for all the schemes with the exception of RK44 scheme. The reason for this is the scheme instability as noted for the case of linear 

oscillator and validated by [3] reports. Therefore, any periodically behaving nonlinear dynamics can be taken as equivalent to linear 

dynamic system. 

 

(a)                                                                                (b) 
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                 (c)                                                           (d)     

Figure 3: Correlation of steady simulated nonlinear pendulum angular displacement and velocity components for parameters

( , 2,1.47)q g   combination. 

Table 7: First twenty steady consecutive simulated Poincare results of nonlinear pendulum for both 

displacement and velocity components at ( , 4,1.5)q g  and ( 500)Dh T   

No 

of 

DT  

Simulated Results by Fourth Order Schemes 

RK41 RK42 RK43 RK44 RK45 RK46 

1  2  1  2  1  2  1  2  1  2  1  2  

1 2.19 -0.05 2.20 -0.04 -1.32 1.41 1.72 -0.30 3.04 0.62 -1.32 1.41 

2 1.60 2.48 1.96 2.06 -1.85 2.02 0.03 -0.40 -0.03 -0.19 -1.80 2.06 

3 1.37 2.20 1.62 1.89 -0.44 0.49 1.73 -0.33 1.55 -0.43 -0.48 0.56 

4 -2.61 1.45 -2.46 1.35 -2.35 1.17 0.08 -0.42 1.18 -0.52 -1.70 1.46 

5 -0.92 2.57 -0.37 2.74 0.78 2.65 1.80 -0.28 2.75 0.39 2.92 0.75 

6 -0.46 0.32 2.29 0.12 2.08 1.88 -0.13 -0.31 -1.23 1.54 0.55 -0.45 

7 2.89 0.40 -2.08 1.85 1.77 1.74 1.54 -0.43 2.11 0.14 2.54 0.22 

8 -1.23 1.43 -0.05 0.03 2.42 0.19 1.00 -0.56 1.51 2.26 -0.81 1.26 

9 -2.68 1.34 1.27 -0.56 -0.49 0.71 2.80 0.43 1.80 1.70 0.81 2.65 

10 0.06 2.77 2.81 0.43 -0.19 -0.11 -1.29 1.42 2.87 0.54 1.95 1.73 

11 -0.48 1.52 -1.22 1.42 1.51 -0.47 2.74 0.60 -1.01 1.11 0.41 -0.06 

12 -3.01 1.05 -2.59 1.41 1.57 -0.39 -1.12 1.21 1.32 2.36 1.15 -0.57 

13 1.62 1.92 -1.02 2.51 0.91 -0.58 0.31 2.80 1.88 1.71 3.03 0.61 

14 -0.66 1.94 -0.53 0.38 -3.09 0.74 2.02 2.15 -0.86 2.08 0.29 -0.39 

15 -0.53 0.65 -2.51 1.05 0.21 0.08 1.26 2.33 -0.67 0.84 2.07 -0.14 

16 -0.76 0.60 1.21 2.39 1.01 -0.61 2.06 1.99 0.87 2.78 2.94 0.41 

17 0.37 -0.43 2.00 1.79 -2.95 0.86 1.54 2.00 1.57 1.84 -1.13 1.29 

18 2.27 0.00 2.03 1.97 1.87 1.78 -0.48 1.33 1.37 -0.39 -0.17 2.77 

19 1.25 2.46 1.60 1.87 -0.02 0.32 0.22 2.81 1.54 -0.41 -1.04 2.10 

20 1.74 1.70 -2.58 1.24 1.43 -0.53 1.82 2.37 1.10 -0.55 -0.68 0.83 

 

Tables 7 and 8 refer. The simulated results lack correlation 

among arbitrarily selected paired schemes for both 

displacement and velocity components. This is a good 

indication of chaotic response of the nonlinear pendulum for 
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( , 4,1.5)q g  combination which is supported by [23].  It is 

however interesting to note that all the six schemes produced 

qualitatively the same Poincare section when compared with 

figure 4 obtained for RK41 which equally compared 

qualitatively well with the report of [2]. Thus the Poincare 

solution is insensitive to choice of simulation scheme and 

simulation time step. But why do step by step results differ and 

the overall results of stable and unstable schemes 

indistinguishable (qualitatively) for chaotic dynamics? 

 

Figure 4: Poincare plot at steady state of the nonlinear pendulum for parameters ( , 4,1.5)q g   and ( 500)Dh T  
 
combination. 

Table 8: First twenty steady consecutive simulated Poincare results of nonlinear pendulum for both displacement 

and velocity components at ( , 4,1.5)q g  and ( 1000)Dh T  

No 

of 

DT  

Simulated Results by Fourth Order Schemes 

RK41 RK42 RK43 RK44 RK45 RK46 

1  2  1  2  1  2  1  2  1  2  1  2  

1 2.22 -0.05 2.22 -0.04 -0.69 0.49 2.31 0.04 2.02 -0.18 -0.69 0.49 

2 1.84 1.98 1.82 1.98 -1.26 1.31 -0.28 2.78 0.67 -0.68 -1.26 1.31 

3 1.90 1.73 1.93 1.75 -0.64 2.67 -1.01 2.10 -2.86 0.93 -0.71 2.65 

4 -0.46 1.39 0.69 -0.17 0.58 -0.46 -0.72 0.86 1.68 1.86 0.23 -0.34 

5 -0.11 2.78 1.39 -0.48 2.51 0.18 1.95 2.13 -0.88 2.08 1.89 -0.26 

6 -0.69 1.99 2.01 -0.15 -0.72 1.13 1.44 2.11 -0.68 0.84 -0.08 -0.39 

7 -0.60 0.76 1.03 -0.66 1.48 2.22 0.60 -0.14 1.08 2.71 1.91 -0.25 

8 -1.38 2.01 -2.74 1.04 1.97 1.76 1.20 -0.54 1.50 1.98 -0.07 -0.39 

9 -0.53 0.63 1.50 2.13 0.51 2.87 2.67 0.33 -1.52 1.97 1.93 -0.23 

10 -0.99 1.01 1.08 2.73 1.78 1.67 -1.21 1.55 -0.46 0.53 -0.04 -0.42 

11 1.64 2.05 1.50 1.98 0.66 -0.47 1.50 -0.18 -1.89 1.40 2.00 -0.19 

12 1.98 2.17 -1.49 1.98 2.66 0.30 0.23 -0.50 -2.57 1.43 0.45 -0.64 

13 1.37 2.20 -0.48 0.55 -1.12 1.54 2.25 -0.01 -1.14 2.46 3.09 0.65 

14 -0.81 2.69 -1.63 1.45 2.01 0.07 1.54 2.27 -0.63 0.58 2.32 0.13 

15 0.55 -0.44 2.80 0.65 -0.70 1.98 1.77 1.73 -1.04 1.08 1.95 0.05 

16 2.47 0.16 -0.92 0.98 -0.55 0.71 2.76 0.47 1.44 2.28 -1.15 1.22 

17 -0.50 0.75 1.73 1.96 0.16 -0.33 -1.25 1.45 1.95 1.74 0.71 2.69 
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18 0.87 -0.49 1.35 2.62 1.87 -0.26 2.96 0.79 0.61 -0.14 2.04 1.82 

19 2.81 0.43 1.39 2.15 -0.08 -0.37 -2.11 1.61 1.33 -0.50 1.96 1.77 

20 -1.22 1.46 -0.10 0.46 1.90 -0.25 0.96 -0.31 2.30 0.05 0.38 2.88 

 

4.  CONCLUSIONS 

This study has shown that good correlation always exist 

between arbitrarily selected paired fourth order Runge-Kutta 

schemes simulated results of linear and periodically behaving 

nonlinear dynamics provided the schemes stability is 

established. That simulated results gross inaccuracy associated 

with scheme instability can be drastically reduced with 

relatively smaller computation time step, but at greater 

computation efforts. Furthermore, chaotically responding 

dynamics can be differentiated by its simulated results lacking 

in correlation between arbitrarily selected pair schemes and 

having Poincare results that are qualitatively the same. Thus 

the study results can be adopted as dynamics systems 

characterizing tool. 
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